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ABSTRACT |Avii!, ilit\ Co eS-

Customers served by an M/M/l queueing system each receive a reward R Dist A.:.>. : 2 /o
but pay a holding cost of C per unit time (including service time) spent in the pc
system. The decision of whether or not a customer joins the queue can be
made on an individual basis or a social basis. The effect of increasing the ar-
rival rate on the optimal policy parameters is examined. Some limiting results
are also derived.

INTRODUCTION

The control of entry of customers to a queue is a virtual necessity in some cases and
highly desirable in others. Rosenshine 161 presents a queue with state dependent service times
for which no steady state distribution exists for any arrival rate and for which control of entry
must eventually be exercised in the presence of continuing arrivals. Even queues for which
steady state distributions exist can often be operated more effectively by controlling entry of
customers, particularly those queues in which customers have a high expected waiting time.

Prior to the appearance of Naor's work [51 which dealt with optimal control of entry to a
single-server queue, control was viewed primaril' nethod of insuring adherence to some
arbitrary externally imposed constraint, e.g., lirn, . i queue size or expected waiting time,
without regard for economic or efficient operation i, - system. Yechiali 191 dealt with the
same problem as Naor in a different, but equivalent, ma.;ner and provided what appears to be a
more generally applicable procedure for determining the optimal control policy and the gain that
can be achieved through its employment.

After the appearance of these early papers, work dealing with the application of optimal
control of arrivals to more general queueing systems began to appear. Knudsen (21 and Yechi-
all 110) extended the optimal control solution to s servers, the Knudsen work considering a
slightly more general cost structure than heretofore examined. A survey by Stidham and Pra-
bhu 17) of the control of queueing systems work also pointed out that many of the papers sur-
veyed had common considerations. Subsequently, Knudsen and Stidham (31 considered the
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526 R. C. RUE AND M. ROSENSHINE

case for which a new customer's net benefit for joining was a decreasing function of the
number of customers already present in the system when the new customer arrived. Lippman
and Stidham [41 examined the optimal control of a queue with state-dependent service rate,
increasing with the number of customers in the system, and random rewards. They showed
that regardless of the discounting policy and time horizon, the individual optimum policy
admits customers to the system whenever the social optimum policy does (and perhaps other
times as well). Stidham [81 extended this work to cover a GI/M/I system. Recently, Johansen
and Stidham [I have shown that many of the properties of and relationships between the indi-
vidual and social optimal control policies apply under very general conditions, e.g., dependent,
nonidentically distributed, batch arrivals.

In this paper, we return to Naor's model and examine the sensitivity of its solution to
changes in the arrival rate, A. We do this for two cases, the individual optimum and the social
optimum. In the former case, an arriving customer acts so as to maximize his own gain. In the
latter, a customer's decision to join the queue or not is based on the effect of the decision on
the gain rate (benefit or profit per unit time) of all customers wishing to use the queueing sys-
tem. For the individual optimum case, the gain rate is shown to rise as X increases and then
fall because the control limit (maximum queue system size at which a customer will choose to
join the queue) remains constant as X changes. In the social optimum case, the maximum gain
rate obtainable is proven to be a nondecreasing function of A whereas the control limit which
yields the maximum gain rate proves to be a nonincreasing function of X. Thus, in all practical
applications, as the arrival rate rises, it is possible to increase the gain rate at the expense of
level of service (fraction of arrivals allowed to enter the queue).

A potential application of the model considered lies in the control of the arrival of aircraft
to an airport. The control limit determined can be used in connection with an examination of
actual traffic during busy periods to see when the traffic exceeds the control limit. The
rescheduling of this excess traffic, delaying it prior to take-off, or the scheduling of this traffic
into alternative terminals represent actions which will increase the overall gain rate for airline
operations. At the same time, fuel expended while waiting to land will be reduced.

THE MODEL AND ITS SOLUTION

The model is an M/M/I queueing model with arrivals occurring at a rate A and having a
service rate capability of A. A cost structure is imposed on the operation of the system in
which

a) each customer served receives a reward of R dollars, and

b) each unit of time a customer spends in the system costs him C dollars.

Each arriving customer is given the choice of joining the queue and receiving reward R and
paying C per unit time in the system or of not joining and not paying or receiving any money.
Customers are assumed to decide by comparing the expected net gain associated with each deci-
sion and choosing the action with the larger gain. (In case of a tie, the customer joins the
queue.) This is the model considered by Naor 151 and Yechiali [91, although Yechiali allowed a
general arrival distribution and a slightly more general cost structure.

Naor argues that all reasonable strategies lead to a finite capacity queue. He determines
n,, the capacity under self-optimization where each customer considers only his own expected
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OPTIMAL CONTROL POLICIES FOR ENTRY TO M/M/I QUEUE 527

net gain in deciding whether or not to join the queue. The expected net gain for joining is
R - ( + 1) C/A, where i is the number of customers the arrival finds in the system. Joining
the queue thus serves the self-interest of a customer if i is less than n,, where n, is defined by

R - (n, + 1)CM < 0 < W - n, C1t.

This strategy leads to an M/M/I/n, queueing system for which

(1) n, - [Rp,/C]

where [ ] indicates "the greatest integer in."

If each customer or an administrator acts to maximize the sum of the individual net
benefits, the problem becomes the social optimum problem. Considering an infinite horizon
without discounting, Naor sets up the following expected overall net benefit rate function:

(2) g(n) - X'(n)R - C L(n)

where X'(n) and L (n) are, respectively, the effective arrival rate to and the expected number
in the system when a maximum of n customers is allowed in the system. g(n) is the expected
net benefit rate or expected gain per unit time when a maximum of n customers is allowed in
the system. The units of g(n) are dollars per unit time.

Another form of (2) will be used in the remainder of this paper. This form is derived by
noting first that

'i-I

X'(n) - \( - 0"(n)) - ' k O,(n)
i-0

where Vi(n) is the stationary probability that there are icustomers in the system when the balk-
ing point is n and second that

L(n) - , ij(n)- jj,_(n)- ( + I) 0,(n).
AL j1 JA 1-

Thus, (2) can be written as

(3) g(n) - 0 U,(n) X (R - (i + 1)C/O.
1-0

Since the G,(n) represent the steady-state probabilities of i semi-Markov process, this equation
represents the gain function for a semi-Markov decision process in which n must be decided.
The optimum value of n can be determined by search or more conveniently by policy iteration.
A derivation of this equation directly from the semi-Markov decision process formulation of
this problem is found in [9].

SOME PROPERTIES OF OPTIMAL CONTROL POLICIES

The gain rate and control limit for the individual optimum and social optimum cases can
be determined from Naor's results for a given value of X. However, the arrival rate X is subject
to change. For example, x grows as the usage of an airport grows. Thus, it is useful to know

VOL. 23, NO. 4, DECEMBER 1931 NAVAL RESEARCH LOGISTICS QUARTERLY



528 R. C. RUE AND M. ROSENSHINE

how the optimal control policy should be changed in response changes in system usage. It is
these changes that we examine here.

An increase in X, the arrival rate, has no effect on the solution to the individual optimum
problem because a self-optimizing customer considers only his own expected net benefit in
deciding whether or not to join the system. The balking point, n, is independent of X as indi-
cated by (1). Self-optimizing customers do not recognize any measure of the overall gain of all
arrivals. They only consider their own expected gain which does not depend on X. However,
for any policy adopted by self-optimizing customers, the gain per unit time can be calculated.
Sample results are shown in Table 1. Comment on these results is reserved until comparable
social optimum results are presented.

TABLE I - Gain Rates Implied
by Individual Optimum for

Various Values of X
(R 5, C - 2, 14 = 3)

A n, g

0.1 7 .431
1.0 7 4.001
2.1 7 6.537
2.2 7 6.595
2.3 7 6.623
2.4 7 6.621
4.02 7 4.637
4.05 7 4.596
5.0 7 3.556

16.4 7 1.448
16.6 7 1.441

100.0 7 1.062

The solution of the social optimum problem is affected by an increase in A. The effect of

A on the expected gain rate of the system is considered first.

THEOREM 1: g is a nondecreasing function of A.

PROOF: Define g(PI, A) to be the expected gain rate of the system under policy Pi when
the arrival rate is A. Let g*(A) denote the maximum expected gain rate when the arrival rate is
A. Let D,(l) be the stationary probability that an arrival is allowed to join when the system
contains I customers and, similarly, let DI(0) - 1 - D,(I) be the stationary probability that an
arrival must balk when i are in the system. Yechiali [9) shows that a deterministic control-limit
policy is optimal so let P, - (D(l): D,(I) - 1, I < no; Di(l) - 0, 1 a no) be such that

g(k ") - g(P,, A"). Let ' > A "and P2 - (D(l): D() - " < no; DI(I) -0, i a no,
where no is the balking point from policy P1 . Under policy P2, an arrival who finds fewer than
no customers in the system is allowed to join with probability A 'YA' and is forced to balk with
probability 1 - VA'. Since no penalty is assessed for rejecting a customer, g(P2 , A')-
g (PI, X') - g*('. Finally, since g(') a g(P 2. A'), g( ') a g*(0').

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 25, NO. 4, DECEMBER 1981



OPTIMAL CONTROL POLICIES FOR ENTRY TO M/M/I QUEUE 529

Although the social optimum balking point can be determined for a given X by policy
iteration, the range of h for which the balking point is a given integer can also be found as fol-
lows. Define {f(i)} to be the sequence of expected rewards for joining, where
f(i) - R - C(i + !)//0 is the expected reward if i customers are in the system. Then, from
(3),

(4) g(n) - 0, 9(n) x f(i).
i-O

Naor states that g(n) is discretely unimodal in n. Thus, no is such that Ag(no + 1) <
0 K, Ag(no), where Ag(n) - g(n) - g(n - I).

.-I n-2Ag(n) - ,(n)A f(i) - # (n- l)Xf(i)

-0 i-0

n-2

- (0,(n) - O9(n - )) Xf(i) + O,(n)kf(n - I).
i-O

Ag(n) > 0 if

(5) 9,,i(n)X f(n - 1) > (01(n - 1) - O(n)) Xf(i).

If p - A,/- ;d 1, then (5) can be written as
R-2{(I P)p'_ (-p'i)

(6) (1 - p)p-lf(n - 1)/( - p+) > 1 -p (1 -p+|) fW

After formation of a common denominator on the right-hand side and division by
11 - p)/(l - p n+1)), (6) becomes

Ipl - P)) -f -n- E o' f(i).
-- ) i-O

n-I

Substitution of p' for (I - pn)/(l - p) leads to Ag(n) > 0 if
i-0

n-I n-2(7) f(n - 1) 1: p p , pif 0), n > 2.
1-0 1-0

Ifp- 1, 0,(n) so (5) becomesn +T so()Ieoe

f(n- l)/(n + 1) > f(i)
1-0 f +I

or
-2

(8) nf(n - 1) f().

Since the limit as p - I of (7) is (8), (7) can be used for all values of p. Thus, for a given p,
no is the largest value of n such that (7) holds.

If g is held constant, (7) can be used to find the range of X for which no is a given
integer. (Note Ag(n) < 0 if Z is changed to < in (7).) Finding the range of X for which
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530 R. C. RUE AND M. ROSENSHINE

no- 1 requires finding X such that .g(1) > 0, but Ag(2) < 0. IfAg(1) < 0, R < C/p and
the system is trivial since customers never enter it. Thus, Ag(1) > 0 for all A since g(0) = 0.
Finding the range of X over which n0 = j, j > 2, requires finding X such that Ag(j) > 0 and
Ag(j + 1) < 0. Note that solving (7) for x such that Ag(n) < 0 or ,g(n) > 0 involves
finding the roots of the n - I degree polynomial resulting from Ag(n) - 0. Use of (7) is
demonstrated by an example.

Suppose that the reward for service is R = 5, the cost per unit time in the system is
C - 2 and the service rate of the single server is A. -3. {f(i)I - (R - C(i + I)/p. - (13/3,
11/3, 3, 7/3, 5/3, 1, 1/3, -1/3, .1..). (Note that n, = 7.) First, find the range of A for which
no= 1. Ag(l) > 0 for all X. Ag(2) < 0 if from (7)

I 0

f(l) ,p' <p ,,p'.f(i) or 16.5 < A.
1- -0

Thus, n0 - I if A > 16.5. Now find the range of A over which n0 = 2. Ag(2) > 0 if
k _ 16.5. Ag(3) < 0 if from (7)

2 1

f(2) Tp ' < p Ip if(i) or -2k 2 - 12, + 81 < 0.
i-o i-0

Solution of the above yields Ag(3) < 0 if A > 4.035. Therefore, no = 2 if 4.035 < A < 16.5.
Further use of (7) yields no = 3 if 2.1 < A < 4.035. Table 2 presents the solution found using
policy iteration for several values of x. These results confirm (7) and Theorem 1.

TABLE 2 - Policy Iteration Results for
Various Values of X

(R = 5, C - 2, . = 3)

X no g

0.1 7 0.431
1.0 5 4.003
2.1 4 6.944
2.2 3 7.128
4.02 3 8.993

4.05 2 9.011
16.4 2 10.998
16.6 1 11.010

100.00 1 12.621

Comparison of Tables 1 and 2 illustrates that no < n, and that the gain rate associated
with the individual optimum policy is no greater than the social optimum gain rate. Also, the
gain rate associated with the individual optimum policy reaches a peak and then declines as A
increases. On the other hand, the social optimum gain rate is nondecreasing in X as shown in
Theorem 1.

The value of no, the forced balking point for the social optimum problem, appears to be

nonincreasing as the arrival rate increases in Table 2. This result is established as Theorem 2.
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OPTIMAL CONTROL POLICIES FOR ENTRY TO M/M/I QUEUE 531

THEOREM 2: no is a nonincreasing function of A.

PROOF: R and A are assumed to be finite and C is assumed to be nonzero. Since Naor
proved that g is discretely unimodal in n, no is optimal if Ag(no + 1) < 0 < Ag(no). Let
no(k) denote the optimal forced balking point when the arrival rate is X. Let n = no(A i,
where A "is a fixed value of A and n > 2. From (7)

Ag(n) > 0 if
n-I n-2f (,, -1 .P, > y" Pf f(i).
i-O i-O

for n > 2, which can be written as

Ag(n) > 0 if
(8) f (n - 1) (0 + p + ... + p"-I1)> PpO) + Ppl() + ..+ p -lf(n - )

As X increases, p increases. Since {f(i)} decreases as i increases, f(0) > f(l) > ... >
f(n - 2) > f(n - 1). Thus, as A increases, the right-hand side of (8) increases faster than
the left-hand side. This eventually leads to Ag(n) < 0 for A greater than or equal to some
' > A " Therefore, no(A') < no(O'). Since Ag(1) > 0 for all A, continuation of the above

argument leads to the existence of AX"' such that no(A) = I for all A > A ". Thus, as k
increases, no decreases until it becomes equal to one.

Since no has been shown to be a nonincreasing function of A and g has been shown to be
a nondecreasing function of A, the question of existence of the limits as A - o of no and g
arises. From Theorem 2, no decreases as A increases until no = 1. no remains one for further
increases in A. Thus,

lim no = 1.
A -00

If no = 1,

00(no) = 0o(1) = P" and 01(no) = 01(I) = A

From (4)
0

g() 1 P ,(I)X f(i) - 1 X f()/(l + A).
i-0

Dividing numerator and denominator of the right-hand side by A and letting -, yields

(9) lim g(1) - p~f(0).
A -on

For the example given previously lim g (1) - 13.
A.-oo

Equation (9) can also be justified intuitively. If no queue is allowed to form, customers
can only join if the system is empty. The expected reward for a joining customer is f(0). The
expected time between departures of customers from the system is 1/1. plus the expected time
between the completion of a service and the arrival of the next customer. In the limit, an
arrival occurs at the instant a service is completed so the system is never empty. Thus, the
expected gain rate of the system as A - is f()- 1 f(O).
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532 R. C. RUE AND M. ROSENSHINE

SUMMARY

The effect of an increasing arrival rate on the individually and socially optimal control pol-
icies for entry to an M/M/I queue has been investigated. The results presented are useful in
determining the sensitivity of the optimal control policies to changes in the customer arrival
rate.
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ABSTRACT

Supp6se one object is hidden in the A-th of n boxes with probability p(A).
We know the probability q(r. k) of detecting the object if it is hidden in box A
and we expend effort r searching box k. Our aim is to minimize the expected
search effort of a successful search. Previously this problem has been solved
only under the assumption that the functions q (-. k) are concave We prove.
without concavity assumptions, the existence of an optimal distribution of
search effort and give a procedure for its construction.

INTRODUCTION

An absent-minded person repeatedly loses his glasses in his own house. In order to
search optimally for the glasses he estimates the following data: p(k) for k E B =
11 ..... n), the a-priori probability that he has lost his glasses in the k-th room, and q(t. k)
for r E R 0

+ and k E B, the conditional probability that he finds .the glasses if he has lost them
in room k and he searches this room for a time period of length t. We assume that q (.. k) is a
probability distribution function, i.e., it is increasing and right-continuous.

More important research areas where we can apply this problem are the following: the
search for a defect in a large system, the search for oil or a mineral in different regions and the
search for a sunken ship where we partition the ocean into cells. In the following we discuss
the search for an object hidden in one of a finite number, n, of boxes.

Now we have to decide how we should search for the hidden object. A search procedure
(1, k,) for i E IN, t, E R + and k, E B prescribes the following behaviour: search box k, for tl
hours, then search box k2 for t2 hours and so on until the object has been found.

These search strategies are appropriate if only one person searches for the object. But
while searching for a sunken ship there may be many boats or planes. In this case, we can
specify that one half of them searches cell 1, another third searches cell 5 and so on. We
assume that the number of boats and planes is so large that it is a reasonable approximation to
assume that we can divide the search effort in an arbitrary fashion.

VOL. 28. NO. 4, DECEMBER 1981 533 NAVAL RESEARCH LOGISTICS QUARTERLY
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534 i, WEGENER

A strategy is a function s :IRO' x B - R0. where s (, k) specifies how much of the search
effort t has to be spent in box k. Therefore, s(t. k) t and s(-. k) is increasing. By

kE8

Q(s, t) we denote the probability that we find the object when we spend search effort t. Obvi-
ously,

Q(s, 0 - p(k)q(s(t. k), k)

and

Q(s, cI)= 1- lim Q(s, t)

is the probability that we never find the object if we use s. The function Q (s. ) is the probabil-
ity distribution function of the random variable Y(s) which measures the search effort which is
necessary to find the object by strategy s. The mean of Y(s) is the expected search effort of s
and will be denoted by E(s). It is a well known result of probability theory that

E (s) - f tdQ (s, )=f (1- Q (s, M)dt.
lO.-l o. )

A strategy s is called optimal iff its expected search effort is minimal.

Gilbert [31 and Kisi [51 determined optimal strategies for some definite concave functions,
q(-., k). Onaga 16] gave a solution of the problem under the assumption that all q(-. k) are
concave. As we shall see in this paper the assumption of Onaga is a considerable simplification
of the problem. Here we have to mention that these three authors tried to solve a more gen-
eral and much more difficult search problem. They assumed that one has to pay some extra
costs, called switch costs, if one changes the place of search. Stone [7] proved the results of
Onaga using new methods which we present in Section 2.

In Section 1 we give a necessary and sufficient condition for the existence of a strategy
with finite expected search effort. In Sections 2 and 3 we repeat briefly the solution of the
problem under the assumption that the functions q (., k) are concave. Later, we shall use these
results for the solution of the general problem.

In Section 2 we assume that our funds are limited by T E RO. The best we can do is to
distribute this search effort in such a way that the probability of finding the object is maximal.
A T-admissible allocation is a function a :B - R0 where 7 a (k) = . The allocation a

kEB
prescribes that we spend a (k) for the search of box k. The probability of success of a becomes

P(a)- 7' p(k)q(a(k),k).
kEB

We construct a T-optimal allocation. In Section 3 we use this result and construct an optimal
strategy.

In the following sections we do not assume that q(-. k) is concave. Our main result is
the following. Let 4(., k) be the smallest concave function nowhere smaller than q(-. k). The
optimal strategy of Section 3 for the search problem where q (. k) is replaced by 4 (-. k), is
also optimal for the problem with the functions q(.. k). In Section 4 we show how we may
improve strategies and in Section 5 we prove the main result.
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OPTIMAL DISTRIBUTION OF SEARCHI EFFORT 535

Finally (Section 6) we compare our results with two similar search problems. First is the
well-known problem where one is not allowed to divide the search effort in an arbitrary fashion,
but where the cost of the j-th search of box k and the probability of overlooking the object dur-
ing this search (even if one searches the right box) is given. Second we consider the search
problem where the hidden objec. is a point of R".

1. THE EXISTENCE OF A STRATEGY WITH FINITE EXPECTED SEARCH EFFORT

Without loss of generality, we assume that p(k) > 0 for all k. Let E(slk) be the
expected search effort of strategy s if the object is hidden in box k. Since

E(s)- 7_ p(k)E(s 1k),
AE8

E(s) is finite iff E(sIk) is finite for all k. If the object is hidden in box k the best we can do is
to search only box k. That means sk defined by sk(t. k) - i and sk(t. k') - 0 for k' ; k is
optimal in that case. Therefore,

E(slk) > E(s&lk)- f (I - q(t. k))dt
I0.-)

and the strategy s may have finite expected search effort only if E(skk) is finite for all k.

THEOREM 1: There exists a strategy with finite expected search effort iff

f (I - q(0, k))dt < -c for all k.
10. 00I

PROOF: We have already proved the only-if part. Now we may assume that

E(skIk) - f (I - q(t. k))dt < 10. ")
for all k. Let s defined by s(t.k) - i/n be the strategy which distributes the search effort
equally to all boxes. Obviously.

E(slk)- nE(s1k) < cc

and
E(S) - 1.: pWE(slk) < .Q. E. D.

k(B

In the following we assume the existence of a strategy with finite expected search effort.

2. OPTIMAL ALLOCATIONS FOR THE CONCAVE CASE

In this chapter we assume that the functions q(., k) are concave. Charnes and Cooper
[2) solved this problem for some definite concave functions q (., k). A general solution has
been obtained by Stone [7]. We cite his results and then we choose a special t-optimal alloca-
tion which will be useful for our considerations for nonconcave functions, q (.. k).

Stone used optimization techniques involving Lagrange multipliers. These basic tech-
niques for the theory of search have been presented by Wagner and Stone [SI. We need the
following function I defined by
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I(k.. ):- p(k)q(t, k) - Xt fork E B, A E R and I E IP
which is called the pointwise Lagrangian. Stone (71 has shown that a f-admissible allocation a,

is t-optimal if for some X > 0

I(k.,A. a,(k))- maxll(k.X, z)Iz E R 1 for all k E B.

The problem of maximizing the pointwise Lagrangian is a problem of calculus. The following
lemma states some easy facts.

LEMMA 1: Let q(-. k) be a concave probability distribution function on R'*. q'(t. k)
limt h-1(q(I + hk) - q(0.k)) is well defined and nonnegative for : > 0. It may happen

h-O.h >O
that q'(O. k) - -c. q'(-. k) is decreasing and right-continuous. 'q(t k) :- lir h-(q(t +

h-O.h< 0

h. k) - q(I. k)) is well defined and nonnegative for I > 0. 'q(-, k) is decreasing and left-
continuous.

q'(t. k) < 'q(t. k) for all I and k.

By these properties it is easy to see that a, maximizes the pointwise Lagrangian for some A > 0
if

p(k)q'(a,(k), k) 4 X and p(k)'q(a,(k), k) > X if a,(k) > 0

and

p(k)q'(a,(k), k) < A if a,(k) - 0.

We now choose for each I > 0 a definite I-optimal allocation in the following way. Let

T>(L, k) :- sup(t E R01p(k)q'(, k) > L)

.and

T (L, k) :- supI E R0 Ip(k)q'(, k) >) L)

fr L E R+ and k E B.

Obviously, T>(-. k) - T(oo, k) - 0 and T; (O, k) - o . For each I E Wo we may
define an allocation a,' with the following properties: a,' is t-admissible; there is an L (1) E ft"
and a box j(:) so that a'(k) - T" (L(t), k) for k < j(t), a'(k) - T>(L(t). k) for k > j(1)
and a'(Ji()) E (T> (L(t).k), TP) (L(W. k)1.

Again, by lemma I and our results above, a,* maximizes the pointwise Lagrangian for
A - L () and is therefore t-optimal.

THEOREM 2: a,' is an optimal allocation of the search effort I.

3. OPTIMAL STRATEGIES FOR THE CONCAVE CASE

By the definition of a' we may conclude that a(k) is increasing as a function of I. Thus,
, defined by s*(t. k) : - a'(k), is a strategy. Again, by the results of Stone [71, s" is optimal.

This may be seen directly, also. Let s be a strategy. Then a, defined by a,(k) :- s(I. k) is a
t-admissible allocation. By theorem 2
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E(s*) - ,f (0 - Q(s., ,)dt - f (I - a,)d
10.00) I0 -

1 f (I - - f (I - Q(s ,)d- E(s).
to.-0) It).-)

THEOREM 3: s* is an optimal strategy.

4. AN IMPROVEMENT RULE

For each search problem which is defined by n. p and q we define the dual problem by n, p
and 4 where h :- n, : - p and 4 (', k) is the smallest concave function nowhere smaller than
q(.. k). By elementary analysis one can prove that for each 4(', k) there is a (perhaps empty)
set of disjoint intervals (tt. f2) so that outside of these intervals q(.. k) and q(.. k) coincide,
while 4('. k) is on each interval (1, f2) a linearly and strictly increasing function larger than
q(. k). We denote these intervals by (i. 12. k) to mark the appertaining box. The set of all
these triples will be called I.

Let us investigate the optimal strategy s° for the dual problem which we have constructed
in Sections 2 and 3. The search effort for box k increases from tt to 12 within a time interval of
length t2 - It if (11, t2. k) E 1. That means s° prescribes that we have to search for a time
period of length f2 - I1 only for box k and the search effort for k increases during this time
period from (t to t2. This will be called the (ti, t2. k) - property.

In the following we shall see that it would not be sufficient to use an arbitrary optimal
strategy for the dual problem instead of an optimal strategy fulfilling the (. t2. k) - property
for each (1t. t2 , k) E I. We explain this fact in the following way. If we increase the search
effort for the box k from t, to t2, then our profit is increased by p(k)q(r 2, k)- p(k)q(ti, k)
while our search effort increases by r2 - t1. The quotient of profit and cost may be called
efficiency. if (ti, t2, k) E I then it is less efficient to increase the search effort for box k from
t, to t1 + h (for h < t2 - 1I) than to increase it from t + h to 12. Then, using the ideas for
the solution of discrete search problems (Wegener 191), we may believe that good strategies
have the (ti. t2, k) - property. The following lemma makes these ideas precise.

LEMMA 2: For each strategy sand for each (tl, t2, k) E I there exists a strategy s' with
the (II t2. k) - property which is at least as good as s.

PROOF: If s has infinite expected search effort the assertion is obviously correct. Other-
wise, we may choose T, E R + and T2 E h0R so that s(T. k) - / and s(T 2 , k) - t2. The case
where we have to choose T2 - -o is a little more complicated. We give our proof for the case
T2 < oo and we add some comments as to how we change the proof if T2 - -.

Let H be the set of all functions h :10, T2 - TI] - (0. t2 - tI where 0 < h (x) -

h(y) 4 x - yifx > y, h(0) - 0and h(T 2 - TI) - t2 - 1 .

In the following we restrict ourselves to strategies i where (t. - s(t..) for I < T, or
i >T T2. For such a strategy i and x E 10,T 2 - T11, let h(x):-i(T1 +x. A)- (T.k).
Obviously, h E H.
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On the other hand, we may define for h E H a corresponding strategy in the following
way:

i(0..: s (t. ") if i < T, or t > T2,

" (t. k) - s(TI. k) + h( - TI) if T, < t < T 2 and

9(0. k'):- s(T(t), k') if T, < t < T2 andk'd k

where T() is chosen so that (,. k") - t. This definition means that we treat all boxes,
A "E

k'. k k, in the same way. If for s there is a point of time T where s(T. k') = t' and
s(T. k') - t "then there is a point of time T' where -i(T, k') - t' and i(T', k" -i t"

Let H* be the following subset of H. For h E H* there exists
y E IO.T 2 - TI- (2- 01)1 so that h(y)- 0 and h(.y + t2- t)- 12- t1. Then the
corresponding strategy s does not spend any effort for box k in the intervals (TI, yI and
Ly + t2 - t1. T21 while we search only box k from the point of time y to Y + f2 - t1. This
function, h, will now be denoted by h,. We conclude that a strategy corresponding to a func-
tion of H has the (tl, t2, k) - property iff the corresponding function h is an element of H° .

But at first we consider another subset H, of H and the corresponding set of strategies
Sm. h E H,, iff we may divide the interval [0. T2 - T11 to 2m parts so that h is constant on m
parts of length (T 2 - T, - (12 - t))/m each while on the other m parts of leagth ( 2 - tl)/m
each h is linearly increasing with slope 1.

If T2 = o the first m parts are replaced by m2 parts of length (12 - t)Im each, and one
part of infinite length, which of course is always the last of all m2 + m + I parts. Since obvi-
ously H,,, is a finite set there exists a best of all strategies in S,,.

. In order to compute a best strategy in Sm we have to decide how to arrange the m periods
when we search box k and the m periods (if T2 = -0 m2 periods) when we search other boxes.
We assume that we are not able to find the hidden object during a period of search, but that we
find the object at the end of a period with the same probability which formerly was the proba-
bility of finding the object during the whole period. By this assumption the expected search
effort of all strategies, i E Sm, is increased by the same amount. Therefore, a best of all stra-
tegies in Sm for the new situation is also the best strategy in S, for the original situation.

Now we are in a situation where we have to arrange optimally m searches of box k and m
other searches (if T2 - co, m 2 other searches) and where we may find the object only at the
end of a search. This is the situation of a discrete search problem which has been solved by
Wegener 191. By the results of that paper the searches of box k belong together since

(fl. 12, k) E 1. Therefore, s*,, the best strategy in S,, prescribes the m searches of box k one
after another. Hence, the corresponding function is of the form h,, for an appropriate y,.

Now we like to approximate the given strategy s by a strategy s. E Sm,. By elementary
analysis it is easy to define s, in such a way that the event that the search effort for box k' E B
reaches I E lo' if we use s, has a delay of at most

max{(t 2 - tl)/m. (T 2 - T, - 02- 1i))/m) < (T 2 - Tl)/m
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compared with the same event for the given strategy s. Therefore,

E(s,) < E(s),,( E(s) + (T2 - T)/m and

lir Els,) E E(s).

If T2 - o- the delay is at most 02 - t)/m plus that search effort for box k which is
prescribed by s after the point of time where we now begin with the period of infinite length.
This point of time is T, + (t2 - t )+ M(1 2 - 11) for m - c,.Since lim

s( . k) - 12 < -c the second term of the delay tends to 0, too. We obtain, in the same way as
above, the result lim E(s,) < E(s).

For s, we have defined the corresponding function h,,. Since y, E 10. T2 - T, -

(t2 - 11)], there is a subsequence y.,, of y,, which converges to y' E (0. T2 - T, - (12- 11)].
If T2 = - we may easily prove that the corresponding strategy so of h0 is better than the
corresponding strategy of h, if Y > A for an appropriate A < -. Since so E S, for all m we
conclude that j,,, E 0. , I and, for that reason, ,,, has a convergent subsequence.

We define s' as the strategy corresponding to h,.. s' has the (1[. 12. k) - property and

E(s') < im Els,) < im E(s:,*) < E(s). Q. E.D.

REMARK: There is at most one triple (1. ,t. k') so that s has the (t1. [, k') - property
and s' has not. But this interval has been broken into only 2 parts. Again, by an easy applica-
tion of the results 191 we obtain a strategy s" at least as good as s which has the (t*. 12, k) -

property and the (T. t1. k°) - property for all triples for which s has this property.

We note that we have not yet proved that we may restrict ourselves to strategies which
have the (. t2. k) -property for all triples of I. If we apply lemma 2 and the remark for all
triples of I, one after another, we have to apply it (in certain cases) for infinitely many times.
It is not obvious that the resulting sequence of strategies converges to a strategy which is at
least as good as the given strategy.

5. OPTIMAL STRATEGIES FOR THE GENERAL CASE

By S° we denote the set of all strategies which have the (It. 2. k) property for all triples
of I.

LEMMA 3: The optimal strategy s° which we have constructed for the dual problem is
the best strategy of S° for the original problem.

PROOF: Let s E S°. For each (t, t2, k) E I there exist T1, T2 E Ro so that
T2- T,- t2 - ,, s searches only box k during the period of time (TI. T21 and the search
effort for k increases during this period of time from t: to t2. For i E IT,, T21

Q(s. ) - Q(s. ) - p(k)(t(: + t - TI. k) - q(t, + t - TI, k))

is independent of s E S° and for all other t E R

Q(s t) - Q(s, ) - 0.
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Thus, E(s) - E(s) is independent of s E S if E(s) < o. (Eand Q indicate that we use s for
the dual problem.) If E(s)= c we conclude E(s) - since E(s) > E(s). By definition
s" E S° and by Theorem 3 s° is optimal for the dual problem. Combining our results we have
proved the assertion. Q.E.D.

LEMMA 4: The optimal strategy s° which we have constructed for the dual problem has
finite expected search effort for the original problem.

PROOF: We have assumed that there exists a strategy s with finite expected search effort.
Thus,

f (I - O(s° t))dt = (s) < (s) < E(s) < oo

By definition

E(s')- f (1 - (s, ))dt- f 0l- OW, )dtlIo.,) lo.0,

+. f (O(s, ) - Q(s, t))dt

where the first term is finite.

Since s° E S° we may divide 10,o) into intervals where 0(s. ) = Q(s . ) and intervals
(corresponding to the triples of I) where Q(s° . t) is linearly increasing and Q(s. ) <
Q(s. ). We may reflect the area between Q(s. ) and Q(s. t) at the straight line Q(s °. ).

Since the reflected areas are disjoint and lie between Q(s. ) and the constant function 1, the
second term above is not larger than the first term. Thus E(s*) < o QED.

THEOREM 4: The optimal strategy s' which we have constructed for the dual problem is
optimal for the original problem, too.

PROOF: If the statement of the theorem is false there exists a strategy s' with finite
expected search effort so that e :- E(s*) - E(s') > 0. Without loss of generality we may
assume that lim s*(t. k) - lim s'(t, k) for all k. We prove the theorem by defining a strategy

s E S' which is better than s*. This is a contradiction to Lemma 3. Starting with s' we shall
define s step by step.

STEP 1: We choose T E IK0 so that

f tdQ(s-, ") < E/2
(T.0l

(this is possible since E(s*) < - by lemma 4) and so that s*(Tk) < r, or s*(Tk) > t2 for
each triple (1, t2 k) E I (this is possible since s* E S*). Let I' be the set of triples where
s*(T. k) >, t2.

Let s(,. k) :-s*(t, k) for t > Tand for t < Twe imitate s'. For t E [0, T] we define

s (0, k) :- min(s (T. k), s'(t', k))

where we choose t' in such a way that T. s "(t, k) t.
kE B

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 4, DECEMBER 1981



OPTIMAL DISTRIBUTION OF SEARCli EFFORT 541

E(s) f 1dQs" + f tdQ(s .
10TI (T.ool

The event that the search effort for box k reaches I < s (T. k) if we use s '; happens not
later than the same event if we use s'. The first term of the above equation for E(s ") is equal
to the following value. If we find the object in box k with search effort I < s°(T, k), we have
to pay the whole search effort which we have spent using s" which is not more than the
corresponding search effort if we use s'. If we find the object after we have spent more than
s*(T k) for box k, we have to pay nothing which is also not more than the corresponding
search effort for s'. By these considerations the first term is not larger than E(s'). The second
term equals (4, IdQ(s. ") and is smaller than e/2. Thus,

E(s") < E(s') +e/2.

STEP 2: Since 0 (- ti) < T we may define I" C I' so that I" contains only

finitely many elements and so that

)' (t2 - t) < e/2.
(lt.)E l'-I"

We apply Lemma 2 and the Remark to s "for each triple of I" one after another. The resulting
strategy is called 3 and

E (-) < E (s I < E s') + /2.

STEP 3: 3 has the (t1.,2.k) - property for all triples of I except perhaps the triples of
- I' - But the length of all intervals which belong to triples of I° is altogether very

small.

We define a sequence of strategies so.  s,. Let so :- . If sk- I is already defined we
define Sk in the following way. For each triple (t. t2, k)E I* we choose the least point of time
I' where SkI(t'. k) = t, and a point of time t" where Sk-1(t" k) - t 2. Outside the intervals
(W, 0" we do not change Sk-1. Inside these intervals we change sk-i to the strategy which
corresponds to h0 (see the proof of Lemma 2). That means we search at first only box k for a
period of time of length t2 - ti, and for t E It + t2 - ti, I" let s&(t. k) = t2 and Sk(t. k') -
sk-I(T(t), k') for k' d k and an appropriate T(t) so that y sk(t, k ") = t. By the choice of t'

k "E B
we don't destroy any (1, t2, k) - property. Let s := s,.

By our procedure s is obviously an element of S'. The event that the search effort for

box k reaches t if we use s happens at most by
(t2 - t ) < 4!/2

(t Il-t2,k )E: 1

later than the same event for i - so. Thus,

E(s) < E() + E/2 < E(s') + i < E(s*)

and s E S. Because of this contradiction to Lemma 3 we have proved the Theorem. Q.E.D.
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6. CONCLUSION

In this paper we have solved a search problem where the search space is discrete but
where time is continuous, i.e., at each point of time we may find the object. Here we like to
compare our results with results for some similar search problems.

Many authors have investigated a discrete search problem where one may find the object
only at the end of some definite searches. This search problem has been solved by Wegener
191. These results were useful for the solution of our search problem since we used these
results especially in Sections 4 and 5. In this discrete search problem there does not exist
always an optimal strategy while in this paper we could prove the existence of an optimal stra-
tegy in each situation. Finally, we like to mention that Kadane and Simon [41 obtained for
discrete search problems similar results in the situation where only finitely many searches have
a positive probability of success.

Arkin [11 solved a search problem which may be called the continuous version of our
search problem. The hidden object is a point of R". The a-priori probability is given by a den-
sity function p: R' - Ro' q (, x) is for each point x E R" the probability distribution func-
tion for the detection of an object at point x. (We omit the measure theoretical assumptions.)

Astrategy s has to prescribe how we distribute the search effort: s R0' x R" - R'so that
s (-. x) is increasing and

fi- s, x)dx -=

for all t. The probability of detecting the object until the point of time tamounts to

Q(s' 0) - f p W q(s(0, x), x) dx.

The aim is to minimize the expected search effort of a successful search. At first Arkin solved
the dual search problem ( . 4) where :=- p and 4 (., x) is the smallest concave function
nowhere smaller than q(-, x). The methods of Arkin and our methods of Sections 2 and 3
resemble each other.

But if we drop the assumption that the functions q(., k ) and q (- x) are concave the
solution of the continuous search problem is much easier than the solution of our problem.
Since each point of R' has the measure 0, s(-, x) is not necessarily continuous while for our
search problem s (. k) is always continuous. This is the reason why there exists an optimal
strategy s (for the continuous dual problem) so that s(t. x) 1V(01, t2) for each triple
(11, t2, X) E I. That means that the search effort jumps over the crucial intervals. This optimal
strategy has the same expected search effort whether we use it for the dual or the original prob-
lem. Since 4 >, q the expected search effort of each strategy is for the original problem not
smaller than for the dual problem. Thus, this optimal strategy (for the dual problem) is
optimal for the original problem, too. This result is similar to our main result. Stone (171,
Theorem 2.4.6) gives a more elegant proof for the results of Arkin. Finally, we like to state an
important difference between the continuous problem and our problem. We call a strategy s
uniformly optimal if for each t >, 0 the allocation a, where

a, (k): s 0. k ) resp. a,(x W s 0, x)

is i-optimal. While for the continuous problem the optimal strategy is even uniformly optimal
there does not always exist a uniformly optimal strategy for our problem if the functions
q (, k) are not concave. For an example see Stone 171 (Example 2.2.9).
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Again Stone [71 gives an example (2.4.8) that even for the continuous search problem
there may not exist a uniformly optimal strategy if the functions q (. x) do not have to be
right-continuous.

Altogether, our results together with the results of Arkin [11 and Stone 171, guarantee the
existence of strategies which minimize the expected search effort for any "reasonable search
problem involving continuous effort.
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ABSTRACT

A cutting plane scheme embedded in an implicit enumeration framework is
proposed for ranking the extreme points of linear assignment problems. This
method is capable of ranking any desired number of extreme points at each
possible objective function value. The technique overcomes storage difficulties
by being able to perform the ranking at any particular objective function value
independently of other objective values. Computational experience on some
test problems is provided.

1. INTRODUCTION

The ranking of extreme points of an assignment polytope has been proposed as an imple-
mentation tool for solving various types of programming problems. Cabot and Francis [31 have
developed a procedure which ranks the extreme points of an assignment polytope in order to
generate a monotone increasing sequence of lower bounds for solving concave minimization
transportation problems. Fluharty [61 has used similar ideas for solving the quadratic assign-
ment problem. As reported by McKeown 101, this scheme works well principally when the
linear term in the objective function numerically dominates the nonlinear term. Murty, Karel
and Little [121 have recommended the solution of the traveling salesman problem through the
use of ranking extreme points of an assignment polytope. McKeown [81 also suggests the use
of such a scheme for solving the bottleneck assignment problem. Sherali [151 has proposed the
ranking of possible objective values taken on by a linear assignment problem in the process of
solving the quadratic assignment problem. Furthermore, in some applications, a linear assign-
ment problem may need to be solved in the presence of complicating side constraints, some of
which may possibly be qualitative such as behavioral constraints [8]. Therefore, the ranking of
extreme points of an assignment polytope is a viable approach.

*This research is supported under NSF Grant #ENG77-07468.
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As a result, several researchers have devised schemes for ranking the extreme points of
an assignment polytope. Murty (I 1] has proposed a method for the general linear fixed charge
problem. This method was implemented, in vain, by Cabot and Francis [3] for the transporta-
tion and the assignment polytopes. Murty's procedure is essentially based on the result that
given the first, second ... , kth ranked extreme points of a linear programming problem, the
(k + l)st ranked extreme point is geometrically adjacent to at least one of these k extreme
points. In the absence of degeneracy, the simplex method may be used to maintain a list of
such adjacent extreme points, in the presence of degeneracy, however, one would also need to
determine all basic representations of a degenerate vertex in order to use the simplex method.
Rubin [14] has shown how Chernikova's algorithm [4,5] may be modified to handle the degen-
erate case. Further, McKeown and Rubin [9] have specialized this technique for ranking
extreme points of a transportation problem, and McKeown [81 has exploited the special struc-
ture of the assignment polytope to further specialize this scheme for -he linear assignment
problem.

Basically, the principal difficulty with the'se schemes arises from the nature of the assign-
ment polytope itself. Balinski and Russakoff (21 have demonstrated that for _n assignment

'-2
problem of size in, there are = f1) (,n - i - )! extreme points adjacent to any given

extreme point. For m = 8, this figure is 16,064. Moreover, the assignment polytope has a
diameter of two. That is, given any two extreme points, x and y, either x and yv are geometri-
cally adjacent to each other, or there exists an extreme point : distinct from x and y such that x
and z are geometrically adjacent and so are y and :. The implication of this is that the pro-
cedures of Murty [111, Rubin [141 and McKeown and Rubin [9] which require an explicit list-
ing of adjacent extreme points become intractable for the linear assignment problem. Even the
procedure of McKeown [81, which uses cost considerations in order to eliminate the storage of
a subset of edges adjacent at an extreme point, is plagued with this problem. This viewpoint is
further supported by the storage overflow problems reported by Fluharty [61 and McKeown
[101.

This paper proposes a procedure for ranking the extreme points of an assignment polytope
which completely avoids the search over adjacent extreme points of the ranked solutions. The
technique employs trivially generated cutting planes in an implicit enumeration framework, and
is capable of ranking any number of extreme points at any feasible value for the assignment
problem. Thus, in particular, it can rank all the extreme points of the assignment polytope,, or
it can rank the objective function values that can be taken on by the linear assignment problem
by simply ranking only one extreme point at each objective value, or it can rank the objective
function values that can be taken on by the linear assignment problem by simply ranking only
one extreme point at each objective value, or it can rank a preset number of extreme points at
each attainable value within any possible range of objective function values. Moreover, the
ranking of extreme points at any given objective value is independent of the ranking at ,ther
values, and hence storage problems are greatly reduced.

In the next section, we discuss the proposed scheme and then illustrate it through a
numerical example. Finally, we present computational results using several test problems
including some available in the literature.
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2. A TWO-PHASE PROCEDURE FOR RANKING THE EXTREME POINTS

OF AN ASSIGNMENT PROBLEM

Consider the linear assignment problem

minimize I I x~j. x E XAJ
i;-1 j-1

where

(2.1) XA = x= (x .  Xmm): xJ= 1 for each j= 1.
I-lI

Ix,= 1 for each i= 1.
j-1

x,- 0or I for each i, j= 1,. m

Let c'= (c 1 .  Cm), where a superscript t defines the transpose operation, and let

(2.2) Vmin = minimum {c'x: x E XA}, Vmax = maximum {c'x: x E XA}.

Consider a T E [,min, Vmaxj and assume that an x' E XA is known such at c'x = VT.

In order to demonstrate the capabilities of our procedure as discussed in the foregoing
section, we will show how one may rank up to a maximum of nmax, say, extreme points having
an objective value of i;, and then how one may generate another extreme point of the assign-
ment polytope having the smallest objective value greater than T, in case v < v.ma. We note
that a typical linear assignment problem may have a large number of extreme points with the
same objective value T in the range [vmj,. i',,]. The following scheme which iterates between
two phases is designed to exploit this property.

To begin with, in the first phase, denoted by Phase I, all pairwise exchanges of facilities
relative to the assignment x i which yield the same objective value are attempted. Thus, if

- xk1= l and if c. + ckl = c,, + ck, then an alternative solution with assignments given by
except that the locations of facilities i and k are interchanged, is generated and stored in a

list L (). After all extreme points with objective value T obtainable through such pairwise
exchanges on x' have been generated, the next solution X2, say, is selected from the list L (),
if such a solution exists. Again, alternative solutions having an objective value T which are
obtainable through pairwise exchanges on x 2 are generated and are stored in L () provided
they have not been generated through pairwise interchanges on previously examined solutions
(x I in this case). This process is continued till none of the solutions stored in L (T) lead to any
new points of XA having a value of T. At this point, the procedure transfers to the second
phase, Phase 11. Of course, if at any point in this generation scheme, the number of points in
L (T) equals nmax, then we may terminate further ranking of solutions having a value i.

In Phase II, an attempt is made to determine if there exists any point in XA - L (G) which

has an objective value of !. Toward this end, consider the solution x, E XA and define the set

(2.3) 1 - {(, j): x) = 1i.

Now, it is easy to see that the cutting plane 1 x~ j < m- 2 deletes the point x', but no
(Q~) E I

other point in XA. This is so, because every other point in XA must have at least two of the
variables x 1, (i, j) E I, equai to zero. But, if exactly two variables x, (i, j) E I1 are zero in
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a given solution, then this solution is necessarily obtained from xt through a pairwise exchange.
Since we are no longer interested in solutions obtained through pairwise exchanges on x' in our
search for points in X4 of value v, we may impose the cut

(2.4) v,, Kn - 3
(ijIE / I

For subsequent solutions x..... .in the list L (i), a cut of the type (2.4) needs to be gen-
erated only if pairwise exchanges on these solutions lead to other solutions in the list L( I).
Hence, if the current list contains n points, then we would have some h < n cuts of the type
(2.4) generated from solutions xp for p E J, where J is an appropriate index set with II = .
These cuts would be of the form

1 v, < m - 3

(2.5) where, 1 = ( j): .c = for each p E J.

Note that the cuts (2.5) need not be explicitly generated and stored; it is sufficient to
merely maintain the index set J. The reason for this is the following. Consider an enumerated
extreme point xP with XJ'P,) = I for i = 1. ... m, where p(i) denotes the location of facility i
in the solution xP. Then one may store xP in the list L (T) as simply the permutation vector
p(l)..... p(m). Now, if p E J, then the cut (2.5) is clearly x m - 3. Hence, in

order to check if a given extreme point xq with X,!q(,) = I for i = 1. m violates or satisfies
(2.5), one simply needs to check whether or not the cardinality of the set (iE{IU. m):
p(i) = q(i) is greater than m - 3.

Now, in addition to the cuts (2.5), since we are no longer interested in points of objective
value less than T, we may impose the cost cut

Mn m
(2.6) 1 c~jxj > V.

i-I j-I

Let us next define the set

(2.7) Q={x: , x, m-3 foreachpEJ, ctx >}

and consider the following problem

FEAS (): minimize tc'x: x E Q n XAI.

Clearly, Problem FEAS (T) will either generate as an optimal solution a point in
XA - L (T) having a value T, ot failing which, will indicate that no such point exists. Thus, let
i solve FEAS (). If c'i - T, then we may set x"+' - i and transfer to Phase I, attempting all
pairwise exchanges starting with the solution x"+1. On the other hand, if c'.i > P or if FEAS
(i) is infeasible, then the list L (T) is complete, and we will say that we have completed one
iteration. Now observe that during the course of an iteration one may have to resort to several
solutions of Problem FEAS (P-) with different sets Q. As a computational expedient for solving
these problems in a particular iteration, we will describe an implicit enumeration scheme which
is initialized only once during the first visit to Phase II of the procedure, and is simply updated
at each subsequent visit in that iteration.
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The fundamental implicit enumeration scheme we use is due to Geoffrion's [71 adaptation
of Balas' [I1 method. Basically, we chose this depth-first enumeration scheme because of the
ease and the minimal storage requirements with which one may perform all the bookkeeping
operations necessary in the implicit enumeration procedure. The bookkeeping here involves
simply the maintenance of a partial solution list which indicates in chronological order which
variables are currently fixed in value at either zero or one. Thus, a partial solution list
(x = I, 3 = 0, -V34 = 0, y3 = I) would indicate that the variables x,1. V23, . 4 and x35 are
currently fixed at the indicated values, and moreover, that v11 was fixed at one before x23 was
fixed at zero, which in turn occurred before it was decided to set -34 = 0, and so on. For the
assignment problem, this feature is very convenient for one may enforce the assignment con-
straints by merely ensuring that no facility is ever assigned to more than one location and vice
versa in the partial solution list. In other words, x, = I implies xk, = V, = 0 for each k.
I = I ..... i, ' i, 1 ; .. Of course, if a facility is barred from each location, or vice versa,
then the partial solution will be fathomed. Thus, for example, if our current partial solution list
is (-\I = 1, X23 = 0, X34 = 0, X3i = 1), we would never consider augmenting this list by setting
xil = I or x13 = 1, since x.\I = I implies that x21 = 0 and that x13 = 0. Furthermore, if this
partial solution list is always incremented each time by assigning a facility to a location, then
whenever a partial solution is fathomed, one simply locates the rightmost variable in this partial
solution list which is fixed at value one, then one complements the value of this variable to
zero, and deletes all fixed variables to the right of this variable. Hence, a new partial solution
list is obtained. Consequently, consider the partial solution list (x1 2 = 1, X33 = 0, x 34 = 0,
x25 = 1, X31 = 0). Note that since the partial solution list is always augmented by suitably set-
ting some variable equal to one, each of the variables which are currently zero were at some
previous point in time equal to one. In particular, x31 was equal to one before being set equal
to its current value of zero. Observe that the current partial solution list bars facility 3 from all
locations 1, 2 ..... 5 (assuming mn = 5). Thus, this solution is said to be fathomed. Conse-
quently, we locate the rightmost variable in the list which is currently one, namely x25, comple-
ment it to zero, i.e., set x2s = 0, and delete all variables to its right, namely, eliminate x31 = 0
from the list in this case. This gives us the new partial solution list (X1 2 - 1, X33 - 0, x34 = 0,
X25 = 0). As proven by Geoffrion 171, this procedure would result in a nonredundant, exhaus-
tive, implicit enumeration of all solutions.

The algorithmic statement below gives the details for the incrementing and the fathoming
operations. Before discussing these implementation details, we draw the reader's attention to
two specific points. Firstly, the moment a feasible solution to FEAS (T) of value T is detected,
then this solution necessarily solves FEAS (v). Secondly, during the implicit enumeration
scheme, we maintain an incumbent solution i .if value i' whikh is updated each time an
improved solution is found, except if this :niproved solution has a value iT. This ensures that
when we have finally enumerated all solutir'is having a value of i

T , and have consequently
solved the final problem FEAS (), the incumbent solution value is equal to the next value
larger than V-, taken on by a feasible assignment, if such a value exists. A detailed description
of both Phase I and Phase If of the algorithm is given below. Here, the algorithm finds at most
17max extreme points having a specified objective value equal to iT. It is assumed that the cost
coefficients cJs are all integer valued.

PHASE I. (Generate an initial list L (i1) using pairwise exchanges.)

INITIALIZATION: (This step is performed each time a new iteration is being com-
menced; otherwise, the procedure transfers to Step I at each subsequent visit to Phase I.)
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Suppose that xt E X4 is given with c'xY = V. Let x1 be the first solution in a list L 0-0.
Set i = -, r = n - 1,1 = , 6. Proceed to Step I.

STEP i: Attempt all pairwise exchanges on x' to find solutions of value tv which have not
as yet been listed in L (1;). Store these solutions by adding them to L (). Further if either this
is the first time Step I is being executed at the current visit to Phase I or if pairwise exchanges
on x' lead !o new alternative solutions of value J, replace J by J U Ir. In any case, increment
n, if necessary, so that n equals the total number of extreme points in the list L (i). If
n > nmax , the maximum number of points desired to be ranked at the value i;, then transfer to
Step 10 of Phase 1I. Otherwise, continue.

STEP 2: If r is equal to n, then proceed to Phase II, Otherwise, increment r by one and
return to Step i.

PHASE Ii. (Solution of the current Problem FEAS (i).)

INITIALIZATION: (This step is executed only on the first visit of the procedure to
Phase 11 during a particular iteration. At all subsequent visits, the procedure may transfer
directly to Step 3 since the previous partial solution list at the last visit to Phase II is also valid
at this stage. The reason being that the new problem FEAS (G) is a further restriction of the
previous FEAS (G), and the manner in which Steps 3 through 9 below are executed ensures
that solutions previously fathomed are also currently inconsequential.)

Initialize the partial solution vector by assigning in - 2 facilities as in the solution x. Set
= o, Since neither of the two completions of this partial solution lead to a new solution of

value T, proceed to Step 6.

STEP 3: Find the feasible completion i E XA of the partial solution vec'i . 'Ii, m,,.-
izes the value of cx through the solution of the associated linear assignmer. -- 401em. Thai is.
solve the linear assignment problem of minimizing c'x subject to x E X, given that the assign-
ments indicated by the partial solution list are forced a priori. (Note that by virtue of Step 7
below, this step is never entered with fewer than three unassigned facilities.) If no completion
feasible to the assignment constraints exists, or if the resulting solution . satisfies c' i >,
transfer to Step 6. Otherwise, continue.

STEP 4: Determine if R E Q, where Q is defined by Equation (2.7). Transfer to Step 7 if
it is not and continue otherwise.

STEP 5: If c'F. - j, then set x"" = R, replace r by r + I, place . in L (j) and go to Step
I of Phase 1. The current problem FEAS () is solved, with the optimal solution value being F.
Otherwise, since c'i < i from Step 3, set i - i and a = c ri and continue.

STEP 6: Fathom the current partial solution by finding the rightmost variable in the par-
tial solution list which is fixed at one, complementing it to zero, and deleting (setting free) all
fixed variables to the right of this variable. If no such variable exists, go to Step 10 since then
the current problem FEAS () is solved with the optimal objective function value being i > '.
Otherwise, return to Step 3.
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STEP 7: If more than three facilities have not as yet been located somewhere in the
current partial solution, proceed to Step 8. Otherwise, enumerate the feasible completions in
X, of the partial solution. Note that at most six such completions exist. If either there are no
feasible completions or if all the feasible completions are infeasible to Q, then transfer to Step
6.

If any feasible completion lies in Q and has an objective value j, then set x' +' equal to
this solution, place x'+ in the L (71), replace r by r + I and transfer to Phase I.

If any feasible completion lies in Q and has a value less than ;,, then pick that solution
with the least objective value and update .i and 1, by replacing them with this solution and its
objective value respectively and transfer to Step 6. If none of the above cases hold, simply
transfer to Step 6.

STEP 8: Find a feasible completion .i E A 4 which maximizes the value of c'x. If
c'7v < iJ, then go to Step 6 since then clearly there exists no completion of the current partial
solution feasible to FEAS (). Otherwise, continue.

STEP 9: Let .x E X4 be the solution found in Step 3. Increment the current partial solu-
tion by assigning that unassigned facility i to that free location J which satisfies ',, = I and
which yields the smallest value of c,, from among all such pairs (i, J). If there are more than
three unassigned facilities, go to Step 3. Otherwise, go to Step 7.

STEP 10: The list L (/;) is complete. If i, = tvmx, the procedure terminates. If it is now
required to generate a new point x* E X.4 with c'x* = v * such that v * is the next greater value
taken on by the linear assignment objective function after /, perform the following routine.

First check if & = i + 1. If it is, then necessarily, x* = ic, v * - ,. If not, then using the
current i as an incumbent solution of value i and setting Q = (x: c'x > i + 1), use the above
implicit enumeration scheme (Phase 11) with obvious modifications to solve the problem of
minimizing c'x subject to x E X. n Q. Then x* and v* are the optimal solution and optimal
objective value obtained, respectively. Again, note that if during this search, a solution of
value V_ + I is detected, then this is an optimal solution. Now, replacing i by v *and xI by x*,
one may initiate a new list L (G with xf as the first solution in this list and transfer to Phase I.

Observe again that during the performance of Phase I1 if any solutions are fathomed, then
we will never have the occasion to reexamine these solutions during subsequent visits to Phase
II for a particular iteration. Hence, the implicit enumeration scheme of Phase Ii may simply be
updated at each visit. For this reason, the incumbent solution .i is not updated when Phase Ii
detects an optimal solution to FEAS (I) of value i.

This further enables one to possibly avoid extra search in determining the solution x* in
Step 10. In our experience, the condition i - iT + I often held at Step 10. Finally, we explain
the motivation behind Step 7. Observe that the cuts of type (2.5) are such that if at least three
facilities are unassigned in a partial solution then for each of these cuts, there exists a comple-
tion (not necessarily feasible, though) which will satisfy that cut. It is because of this reason
that we do not attempt to check for existence of feasible completions which satisfy these cuts,
until three facilities remain unassigned. However, we do check at Step 8 for existence of feasi-
ble completions which satisfy the cut cx > V.
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3. ILLUSTRATIVE EXAMPLE

Consider a linear assignment problem with m = 4, having the following cost matrix

(cu = 1 2 4

12 21

For this problem, -min 4, Pmax = 12. Let us select i = vmin - 4 and enumerate all possible
solutions with this objective value. Hence, we know x1 = (3,1,2,4) of value cYx1 - - = 4.
(Note that an assignment solution is being represented as a permutation vector
(p(l), P(2) ... p(m)), where p(i) satisfies X,p(, = 1, i= 1. m for that solution.)

ITERATION 1.

PHASE I.

INITIALIZATION: Given x1 - (3, 1,24) with c'x t = V- 4, we have, L() -
1(3, 1,2,4)). Set - o, r = n = 1, J = 4.

STEP 1: No further solutions are generated. Set J = {1), i = IJI = I and from Equation
(2.7), Q = Ix: x13 + x21 + x32 + x44 (< I, c'x )4).

STEP 2: Since r = n -I, proceed to Phase II.

PHASE II.

INITIALIZATION: Here, m - 2 - 2. 'Thus, our starting partial solution list, abbreviated
by PShenceforth, is PS- (x13- I. x21 - 1).

STEP 6: Fathom PS. This gives the updated PS - (x13 - 1, x 21 - 0).

STEP 3: Solve the assignment problem with x13 - 1, x 21 - 0 to get - (3,4,2, 1) with
cti- 7 <v - - .

STEP 4: i q Q.

STEP 7: Currently, PS - (x,3 = I, x21 - 0). Thus, the completions are
(3,2,1,4) q Q
(3,2,4,1) E Q of value 8
(3,4,1,2) E Qof value 10
(3,4,2,1) q Q.

Hence, update i - (3,2,4, 1) with b - 8.

STEP 6: Fathom PS. The new PS - (x13 - 0).

STEP 3: Solve the assignment problem with x 3 -0 to get T - (2,1,3,4) with
c- 6 < - 8.
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STEP 4: c q Q

STEP 7: Currently, PS - (x13 - 0). Thus, all four facilities are unassigned.

STEP 8: Putting x13 - 0, find the maximizing assignment solution T Thus,
c';- 12 W - 4.

STEP 9: Examine i - (2,1,3,4) found in Step 3 above. Force the assignment x 21 - !.

Hence, the new PS - (x1 3 - 0, x 21 - 1).

STEP 7: Enumerate the completions of PS
(2,1,3,4) q Q
(2,1,4,3) E Q of value 9
(4,1,2,3) q Q
(4,1,3,2) E Qvalue 8

STEP 6: Fathom PS. The new PS - (x13 - 0, x21 - 0).

STEP 3: Solve the assignment problem with x13 - 0, x 21 - 0 to get 3 - (1,2, 3, 4) with
c'- 8 > ;- 8.

STEP 6: Since PS - (x13 - 0, x 21 - 0) currently, fathoming PS leads to a termination of
the present iteration.

STEP 10: L(4) - ((3,1,2,4)), a singleton. Now, to find x* E XA of Step 10, since
-8 > i + 1 - 5, we let Q - (x: c'x > 5) and using i - (3.2,4, 1), we construct a starting

partial solution list PS - (x13 - 1, x 22 - 1) Verifying that the best completion of this list is
indeed .c of value ; - 8, we proceed to Step 6.

STEP 6: Fathom PS. The new PS - (x1 3 - 1, x 22 - 0).

STEP 3: With x13 - 1, x22 - 0, the linear assignment problem yields T - (3,4,2,1 ) with
c'i - 7 < ; - 8.

STEP 4: i E Q of Step 10 above.

STEP 5: Updatei . - i - (3,4,2,1), 3-cl - 7.

STEP 6: Fathom PS. The new PS - (x13 - 0).

STEP 3: With x1 3 - 0, solve the linear assignment problem to get Tr - (2, 1,3,4) with
c'i - 6 < ; - 7.

STEP 4: i E Q of Step 10 above.

STEP 5: Update !r 2- .c - (2,1,3,4), -c'c - 6.

STEP 6: Fathom PS. "i . -",ds to a termination of the operation of finding the next
larger objective value. Hence, - , * of Step 10 are x* - - (2, 1,3, 4) and v" -- - 6.

One may now enumerate solutions of value 6 if so desired.
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4. COMPUTATIONAL EXPERIENCE

For the purpose of computational testing, we will use the following test problems. The
problem of size m = 4 is the illustrative example of Section 3. The problem of size m - 3 has
the following cost matrix

Problems of sizes m = 5, 6, 7, 8, 12 and 15 have as their cost matrices those corresponding to
the linear assignment problems, the extreme points of which need to be ranked by Cabot and
Francis' [3] procedure applied to the quadratic assignment test problems of Nugent, Vollmann
and Ruml [131 of respective sizes m = 5, 6. 7, 8, 12 and 15. Problems of sizes 25, 50, 75, and
100 have their cost data generated as indicated below.

The procedure was coded in FORTRAN IV and the computational times reported are in
c.p.u. seconds of execution time on a CDC Cyber 70 Model 74-28/CDC 6400 computer in
time-sharing mode under normal batch operation with compilation performed using the OPT =
I option. Table 4.1 gives the experience for a total ranking of all extreme points of the assign-
ment polytope, that is, with nmax = m!. Table 4.2 gives the experience for simply ranking the
objective function values taken on by the linear assignment problem, that is, with nmax - 1.
Table 4.3 gives results for ranking at most 500 extreme points at each objective value assumed
by the linear assignment problem, so that nmax = 500. Table 4.4 deals with ranking at most 50
extreme points at the first 10 objective function values attainable. The data for these problems
is generated according to c= (ij)mod 10. Finally, Table 4.5 gives some computational testing
of problems with cost coefficients uniformly generated at random in the interval [0, 1001.

Note that during any iteration, each visit to Phase II results in only one additional
extreme point being enumerated except for the last visit, when no extreme point is
enumerated. In the tables below, the column designated "a" records the average number of
passes through Phases I and It per iteration. Hence, the total number of extreme points gen-
erated in Phase I1 is given by (a-) (Number of iterations).

TABLE 4.1 - Ranking of All Extreme Points (nrmax = m!)
m V Number of a b c.p.u. Seconds of

Iterations Execution Time

3 3 7 3 1.00 1(3), 4(5), 1(7) 0.018
4 4 12 8 2.25 1(4), 1(6), 3(7), 7(8), 3(9), 0.477

4(10), 4(11), 1(12)
5 50 55 6 2.833 20(50), 14(51), 28(52), 1.378

28(53), 16(54), 14(55)
6 82 84 2 1.00 480(82), 240(84) 66.677
7 137 144 8 1.125 48(137), 384(138), 912(139), 981.556

1344(140), 1200(141),
768(142), 288(143), 96(144),

a - Average number of passes through Phases I and II per iteration
b - Number of extreme points ranked with values in parentheses at each iteration
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TABLE 4.2 - Ranking o,All Ob/ective Function Values (n,, x = 1)

Execution Time in c.p.u Seconds
m Vmnin I'max Number of a

Iterations min time per max time per Total
iteration iteration time

3 3 7 3 1.00 0.002 0.004 0.008
4 4 12 8 1.00 -0.000 0.058 0,092
5 50 55 6 1.00 -0.000 0.026 0.042
6 82 84 2 1.00 0.002 0.101 0.103
7 137 144 8 1.00 -0.000 0.196 0.443
8 186 199 14 1.00 -0.000 1.723 5.670

12 493 517 25 1.00 -0.000 1.622 5.700
15 963 1034 72 1.00 -0.000 4.320 26.631

a - Same connotation as for Table 4.1,

TABLE 4.3 - Partial Ranking of Extreme Points at each
Objective Value with nnma =5 500

m Vmtn Number of c.p.u. Seconds of
'max Iterations a Execution Time

7 137 144 8 1.125 166.142
8 186 199 14 1.00 250.906

12 493 517 25 1.00 201.315
15 963 1034 72 1.00 624.209

a - Same connotation as for Table 4.1

TABLE 4.4 - Partial Ranking of Extreme Points at the
First 10 Objective Values with nmax = 50

Execution Time in c.p.u Seconds

m Vmin 1'max a min time per max time per Total

iteration iteration time

25 21 183 1.00 0.034 0.288 0.900
50 40 365 1.00 0.026 0.102 0.522
75 61 548 1.00 0.032 0.354 1.046

100 80 730 1.00 0.042 0.154 0.828

a - Same connotation as for Table 4.1.
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TABLE 4.5 - Partial Ranking of Extreme Points of Problems with Cost Coefficients
Uniformly Generated at Random in the Interval [0, /001

Number of Execution Time in c.p.u Seconds

Iterations m V min V max a min time per max time per Total
iteration iteration time

Number of 25 99 2356 1.00 -0.00 22.46 46.47
Iterations = 10 50 107 4805 1.00 -0.00 15.91 33.29

75 108 7297 1.00 -0.00 15.25 33.15
nmax= 1 100 135 9794 1.00 -0.00 51.27 105.19

Number of 25 99 2356 3.00 2.63 23.59 66.20
Iterations = 5 50 107 4805 4.20 24.55 98.21 273.23

75 108 7297 4.00 81.68 184.47 585.87
nmax 5 100 135 9794 3.00 60.38 171.23 609.47

Number of 25 99 2356 6.00 2.25 56.06 282.07
Iterations = 10

nimax= m!

Number of 25 99 2356 3.20 2.22 25.95 70.03
Iterations = 5

nmax
= m!

a - Same connotation as for Table 4.1
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A PRIMAL-DUAL CUTTING-PLANE ALGORITHM
FOR ALL-INTEGER PROGRAMMING
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ABSTRACT

The integer programming literature contains many algorithms for solving
all-integer programming problems but, in general, existing algorithms are less
than satisfactory even in solving problems of modest size. In this paper we
present a new technique for solving the all-integer, integer programming prob-
lem. This algorithm is a hybrid (i.e.. primal-dual) cutting-plane method which
alternates between a primal-feasible stage related to Young's simplified primal
algorithm, and a dual-infeasible stage related to Gomory's dual all-integer algo-

rithm. We present the results of computational testing.

In this paper, we describe an algorithm which we call the Constructive Primal-Dual Algo-

rithm (CPDA), for solving IP problems of the form (P) below.

(1) maximize X0 - X cxj = 0
i-I

(P)
n

(2) subject to I a,jxj < b, i = 1- m
/-I

(3) xj > 0 and integer, j - 1, n

(4) where ci, at, b, are integer for all i, j.

Glover [21 developed a "Pseudo Primal-Dual" integer programming algorithm (PPDA) in
which the pure integer programming problem is solved in two stages, systematically violating
and restoring dual feasibility while maintaining an all-integer tableau (PPDA is the only
primal-dual algorithm reported in the literature). This algorithm starts with a dual feasible
tableau similhr to that of Gomory [31. A cut constraint is generated from the row with the larg-
est number of negative elements, and dual simplex is then applied. If this stage does not des-
troy dual feasibility, then the process is repeated until an optimal solution is reached. Other-
wise, dual feasibility is restored by a sequence of "pseudo-primal" pivot steps using the column

that is lexicographically most negative when divided by the corresponding coefficient in the

source row (restricting attention to positive coefficients), and the pivot row from the dual stage.

The CPDA alternates between a primal-feasible stage related to Young's SPA (71, and a

primal-and dual-infeasible stage related to Gomory's dual all-integer algorithm 131. The CPDA
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departs from Young's technique in its choice of the cut row. This algorithm solves (P) by usu-
ally starting primal-feasible and dual-infeasible (if (P) is a maximization problem with all "<"
constraints), as does Young's SPA. Whenever a stationary cycle is encountered, the CPDA
avoids degenerate iterations by developing a cut which deliberately moves into the infeasible
region, and then attempts to return to primal feasibility at a better solution point than the one
from which it departed.

I. THE CONSTRUCTIVE PRIMAL-DUAL ALGORITHM

This section presents an outline and a discussion of the CPDA. Two similar versions of
the algorithm are presented (CPDA-l and CPDA-2), and are used in solving two distinct
classes of integer programming problems. We employ the Beale tableau, explicitly carrying only
the nonbasic columns and the constraint vector.

CPDA-I can be used in solving most standard IP problems; ie., those IP problems that
are not highly primal- or dual-degenerate. Algorithmic steps of the CPDA-I are as follows.

Primal Stage

STEP 1: Write the IP in form (P). If some b, < 0 then go to the dual stage. Otherwise,
check to determine whether c. > 0 for j - 1,2. r, if so, stop; the current basis is
optimal; otherwise, go to Step 2.

STEP 2: Select the column a k which is lexicographically the most negative as the pivot
column. If all components of a k are negative, stop; the value of the objective function is
unbounded. Otherwise, select as the source row that 13r for which bi/aik is a minimum, and
ak > 0. Break ties by arbitrary selection. If b, > ak go to Step 4; otherwise, go to Step 3.

STEP 3: In column ak search for a new row 03, such that [br/arj is the smallest ratio
greater than or equal to 1, where ak > 0, and where I I signifies the greatest integer part. If
no such row 6, exists then row 6, from Step 2 is selected as the source row. Go to Step 4.

STEP 4: Construct the cut-constraint as follows:

(5) , [a,/ak] (i) + s = [b,/a,k
J-i

where s, is a nonnegative integer variable called the "cut-slack." Append constraint (5) to the
bottom of the current tableau. Go to Step 5.

STEP 5: Perform a simplex iteration by pivoting on the "+ 1" (the pivot element) in the
bottom row and in the selected pivot column a k . The slack variable s, in (5) becomes a non-
basic variable. After the iteration is completed, discard the bottom row. If some b, < 0 in the
current tableau, then go to the dual stage. If all c, > 0, stop; the current basis is optimal. Oth-
erwise, go to Step 2.

Dual Stage

STEP 6: If all b, > 0 and cj > 0, stop; an optimal solution has been obtained. Other-
wise, go to Step 7.
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STEP 7: Select the source-row 3, as the row for which r >, 1, and r - min (i: b, < 0).
Go to Step 8.

STEP 8: If a,, > 0 for all j > 2, stop; (P) has no feasible solution. Otherwise, consider

all columns aj such that aj < 0. Choose ak such that ck < 0 and a k < a, for all
j = 1,2. n, where "<" represents the lexicographically smallest column, and

Ia1, a 2j am "
a,j aj a, J

If there is no such ck < 0 then go to Step 9; otherwise go to Step 10.

STEP 9: For the source-row 3, from Step 7 and for all a,, < 0, select the entering

column a k such that cak > a1 if and only if Ck > 0. If there is no c, > 0, then consider a,
such that c. =0, for a, > 0. Go to Step 10.

STEP 10: Construct a dual cut with cut-constant larkl, generating a cut with a pivot ele-
ment of "-I." Append the constraint (5) to the bottom of the tableau. Go to Step 11.

STEP 11: Perform a simplex iteration by pivoting on the "-1" in the bottom row and in
the selected pivot column ak. The slack variable sc in (5) becomes a nonbasic variable. After
the iteration is completed, discard the bottom row. If some bi < 0, then go to Step 6; other-
wise go to the primal stage (Step 2).

We modified CPDA-I to solve a special class of IP problems which are highly primal- and
dual-degenerate (e.g., fixed-charge IP problems). A modified version of CPDA-I (designated
herein as CPDA-2) involves the following changes to the original algorithm.

In Step 2 of CPDA-1, if b, >, a,k for some source-row 6, then go to Step 4. Otherwise,
we substitute a procedure for Step 3 which constructs a cut from the objective function of the
current tableau, using the largest (least negative) negative cj as the "cut constant." Inequality
(6) is used to construct the cut-constraint (7); that is:

fl

(6) , Cjx > Xo +1,
j-I

(7) . [Cj/cjk (t) + S, - (x 0 + l)/ckl,
j-I

where x 0 is the current value of the objective function. Since the resulting tableau is primal-
infeasible, we proceed to Step 6.

Note that all the other steps (with the exception of Step 3) remain the same in this ver-
sion of CPDA.

Discussion of CPDA

At this point, it is useful to discuss in more detail some of the algorithmic steps presented
in the previous section.
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In Step 2 of CPDA-1, if br/ark >, I then the next iteration will be a transition cycle, oth-
erwise a normal primal iteration would generate a stationary iteration (since ak > b,). By
imposing the "next higher integer rule," the CDPA is actually attempting to avoid a stationary
cycle whenever possible by transforming the primal-feasible problem into a primal- and dual-
infeasible one. The "next higher integer" rule is actually the essence of the basic CDPA algo-
rithm. It is at this stage of the algorithm that CPDA departs from Young's SPA.

In Step 8, the effect is to generate the strongest possible cut in the primal-dual-infeasible
tableau. Experience with many test problems has shown that primal feasibility may be reached
much faster if the Ck/ak ratio is the smallest possible ratio for all cA and a,, > 0. In most non-
degenerate problems (in a dual sense), this rule is very effective. However, for highly dual-
degenerate problems, CPDA-I is usually less efficient. In Step 9, the CPDA is attempting to
avoid dual-degenerate iterations whenever possible. That is, when zero prices are present,
CPDA refuses to use those columns as pivot elements; instead it searches for a c, > 0 combi-
nation.

The major difference between the CPDA-I and CPDA-2 is in the use of the "Objective
cut" rule. That is, instead of selecting the next higher integer ratio of br/a (where b, > a,,),
whenever the next iteration would normally be a stationary cycle, a cut constructed from the
current objective function is appended to the bottom of the tableau, and the RHS value
replaced by a "-I". The effect is that CPDA-2 is constraining the current value of the objective
function to be at least one unit higher, and challenging the primal-feasibility state of the prob-
lem. Two conditions may result: (a) the tableau will remain primal-feasible, and generate
further transition cycles, increasing the objective function value- or (b) the algorithm will enter
a primal-dual-infeasible stage and attempt to regain primal-feasibility status by generating dual
cuts. At this point the tableau may indicate that there is no feasible solution to the problem, by
recognizing that in at least one of the constraints, b, < 0 and all a, > 0. In that case, the
computation is terminated with the most recent primal-feasible tableau being the optimal solu-
tion of the IP problem. However, if this condition does not occur, the CPDA continues with
the primal-dual-infeasible stage of the problem until a primal-feasible tableau is reached. This
process is repeated until an optimal solution is obtained.

2. RESULTS OF COMPUTATIONAL TESTING

A set of nineteen test problems reported by Haldi 4I, and solutions given by Trauth and
Woolsey 15] and Wahi and Bradley 161, are used for computational testing. These problems are
categorized by Trauth and Woolsey as follows:

(a) ten fixed-charge problems of Haldi; and

(b) nine allocation problems of Trauth and Woolsey.

Trauth and Woolsey report that each problem set has been selected to show a different
facet of the generalized integer linear programming problem. The problems are, as a rule,
rather small; however, their difficulty is illustrated by the fact that three of the smallest did not
converge with four of five commercial codes after 15,000 ite,"tions.

The nine allocation problems are used to investigate the sensitivity of some integer linear
problems to a relatively minor change in the problem matrix. Each allocation problem consists
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of ten decision variables, one major constraint, and the upper bound constraints for each of the
decision variables. All nine problems are identical in their structure except for the right-hand-
side values. The ten decision variables are of the 0-1 type.

The ten fixed-charge problems were chosen because of the difficulty of solution in spite of
their small size. These problems are difficult chiefly because their initial tableaus are heavily
primal- and dual-degenerate.

Analysis of Computational Results

Results of computational testing for ten "fixed-charge" problems are exhibited in Table 1.
The "fixed-charge" problems are interesting and unusually difficult to solve, because their start-
ing tableaus are heavily dual- and primal-degenerate. The performance of CPDA-2 is compared
to that of seven other algorithms. Incidently, the authors' version of Young's SPA did not
converge for any of the twenty-five test problems; it is therefore excluded from further analysis
in the following "computational results" tables.

TABLE I - Results of Computational Testing for FLred-Charge Problems

On-Site Tests Commercial Codes'
Code CPDA-2 BDA IPM3 LIPI IL2-1 ILP2-2 IPSC

Problems # Optimality Feasibility

1 3 7* 12 54 24 135 36 32
2 3 7* 14 81 15 94 47 45
3 3 7* 10 37 26 154 104 56
4 6 8* 12 91 18 93 18 22
5 7 8* 107 +7000 158 +7000 +7000 6104
6 7 8* 83 +7000 123 +7000 311 3320
7 7 8* 107 +7000 159 +7000 +7000 +7000
8 7 8* 83 +7000 126 +7000 306 +7000
9 64 65 44 118 42* +7000 289 339

10 4** NA 879 1396 102* +7000 +7000 +7000
1Source: 151
*Best number of iterations
**Best useful solution (within 20% of optimum)-no convergence in 10 minutes of CPU time

For every fixed-charge problem under CPDA-2 in Table 1, two different results are
reported: (a) the number of iterations after CPDA-2 has attained optimality- and (b) the
number of iterations after CPDA-2 has reached an infeasible state. For example, in fixed-
charge problem #1 CPDA-2 reached the optimum solution in only three iterations. Then, in
order to determine whether the current solution is feasible as well, it proceeded with the algo-
rithmic process until, in the seventh iteration, it reached an infeasible state. Therefore, in this
example, only three iterations were required by CPDA to solve problem #1, but seven were
required to verify that fact.

For problems #1 through #8, CPDA-2 converged in less than eight iterations, which is a
remarkably consistent and encouraging performance. It is worth noting that CPDA-2 reached
the "near-optimum" solution for these problems almost instantly. For fixed-charge problem #9,
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CPDA-2 was only outperformed by Austin's Bounded Descent Algorithm [l and the commer-
cial code LIPI, although the difference in number of iterations does not appear to be large, For
the fixed-charge problems, from an overall point of view, CPDA-2 reduced the number of
iterations significantly. Next to CPDA-2, Austin's BDA showed an interesting superiority over
all the other IP codes examined.

The results of computational testing for the nine allocation problems are exhibited in
Table 2. Since the allocation problems are "normal" integer programming problems (i.e., they
are not heavily primal- and dual-degenerate), the usefulness of CPDA-2 is limited. Therefore,
the basic form of CPDA, i.e., CPDA-l was used in solving these problems. CPDA-l was
slightly outperformed by BDA and one of the commercial IP codes (IPM3). However, in gen-
eral, the number of iterations appears to have the same order of magnitude for these algo-
rithms. One reason for this poorer performance by CPDA-l is that is it a primal-dual algo-
rithm. That is, problems are solved in two distinct stages in which the algorithm searches for
both optimality and feasibility conditions, thus requiring a relatively larger number of iterations
in reaching the final solution. However, this difficulty did not deter the CPDA from outper-
forming several of the "one stage" IP codes tested. For instance, in almost all the cases, the
performance of CPDA-I can be ranked no worse than three out of a possible seven (in fact for
problems #7 and #8 CPDA gave the best result).

TABLE 2 - Results of Computational Testing./br Allocation Problems

On-Site Tests Commercial Codes i

Code CPDA-l BDA IPM3 LIPI 1L2-1 ILP2-2 IPSC
Problems #

1 39 13* 14 19 54 51 46
2 56 20* 31 55 163 77 64
3 23 14* 30 41 168 59 71
4 30 12* 18 19 192 48 62
5 30 3* 11 12 139 32 50
6 45 35 18* 40 157 54 81
7 38* 395 61 81 504 119 131
8 21* 38 21* 51 370 57 102
9 66 2* 12 12 201 34 44

ISource: 151
'Best number of iterations

3. CONVERGENCE PROPERTIES

As regards t' e existence of a mathematical proof of convergence for the CPDA, two dis-
tinct stages must be considered-primal-feasible convergence and primal-dual-infeasible conver-
gence. For the first case, two conditions may occur: (a) the next iteration in the solution pro-
cess is a transition cycle, in which case the convergence proof will be similar to that for
Young's SPA [7]; or (b) the next iteration in the solution process is a stationary cycle, in which
case the CPDA will require the use of the "next higher integer rule," which would in fact neces-
sitate a convergence proof of the CPDA for the first stage. No formal mathematical proof has
been obtained for this condition. Fortunately, the second stage of CPDA (i.e., the primal-
dual-infeasible case) is very similar to that of Glover's PPDA 121 for which a convergence
proof is available in the literature.
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On the surface, there would seem to be the possibility that the CPDA might leave the
feasible region and reenter at the same point from which it departed-thus cycling and failing to
converge. However, during dual iterations, the feasible region is diminished by the dual cuts,
so that the CPDA would encounter a different problem upon reentry than it departed from-
even though it re-entered at the same lattice point. This fact is undoubtedly the key to a for-
mal convergence proof for the CPDA.

4. SUMMARY AND CONCLUSIONS

The CPDA is appealing for several reasons: (a) in primal algorithms, artificial variables
must be used when the constraints (2) of (P) include " > " or" =" constraints, and the presence
of such variables usually causes a significant increase in computational effort- (b) for highly
degenerate problems, existing primal algorithms frequently encounter cycles which involve
thousands of stationary iterations- (c) in all current d.al algorithms, the objective function (0)
of (P) must include only c, > 0, or must be transformed into this form by finding upper
bounds on the associated variables, (d) Glover's PPDA [61 (the only other primal-dual algo-
rithm known to exist) can only solve minimization problems with some " > " and/or "=" con-
straints; and finally (e) the main drawback of all dual-based algorithms including Glover's
PPDA is their inability to produce a "useful" solution before the integer optimal solution is
reached. CPDA has this capability.

As regards computational efficiency, CPDA performed well in solving highly primal- and
dual-degenerate fixed-charge problems. By incorporating an objective function cut, CPDA
manages to delete many primal-dual-degenerate iterations, and eventually reaches the optimal
solution in a small number of iterations. On the allocation problems, CPDA performed con-
sistently, but did not dominate the other algorithms-as was the cave for the fixed-charge prob-
lems.

The general conclusion drawn from this research regarding the computational efficiency of
the CPDA (in comparison with other IP algorithms) may be summarized as follows:

(a) Computation time is code dependent;

(b) Although an integer problem may be easily solved by one IP code, another code may
prove a complete failure-

(c) CPDA can obtain a "usefur solution if the computation must be stopped prematurely.
This is an important characteristic, since dual-based algorithms (and Glover's hybrid PPDA) do
not have such a feature. No one code is uniformly better for all types of integer problems,
although CPDA appears to perform extremely well on a set of difficult fixed-charge problems.

Two Caveats

First, we should note here that the standard test problems used in our computational
testing-although difficult-are rather small. We are currently in the process of randomly gen-
erating larger problems for testing the algorithm, but preliminary results indicate that such
problems-although larger-are relatively easy.
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Second, we should acknowledge that branch-and-bound techniques for IP are generally
considered superior to cutting-plane approaches. The problem with comparing these two tech-
niques is that the criterion of interest in our study was the number of simplex iterations, rather
than CPU time. Moreover, for ease of programming, the algorithm is written in SAS, which
has remarkable matrix/vector handling capabilities, but is relatively inefficient in the sense of
CPU time. We intend to further refine the algorithm (e.g., to incorporate advanced starts) and
to reprogram it in PL-I. Once this is accomplished, we will he able to make comparisons
regarding solution efficiency, by comparing our results with tho-e obtained by IBM's MPSX,
which is a branch-and-bound algorithm.
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ABSTRACT

This paper addresses the problem of computing the expected discounted re-
turn in finite Markov and semi-Markov chains. The objective is to reveal in-
sights into two questions. First, which iterative methods hold the most prom-
ise'! Second. when are iterative methods preferred to Gaussian elimination?
A set of twenty-seven randomly generated problems is used to compare the
performance of the methods considered. The observations that apply to the
problems generated here are as follows: Gauss-Seidel is not preferred to Pre-
Jacobi in general. However, if the matrix is reordered in a certain way and the
author's row sum extrapolation is used. then Gauss-Seidel is preferred.
Transforming a semi-Markov problem into a Markov one using a transforma-
tion that comes from Schweitzer does not yield improved performance. A
method analogous to symmetric successive overrelaxation (SSOR) in numerical
analysis yields improved performance, especially when the row-sum extrapola-
tion is used only sparingly. This method is then compared to Gaussian elimina-
tion and is found to be superior for most of the problems generated.

I. INTRODUCTION

This paper addresses the problem of computing the unique N-vector v* that satisfies
v* - r + Pv*, where r is a given N-vector and P is nonnegative and has a spectral radius less
than one. The primary intended application of this problem is finding the expected discounted
return in infinite horizon, stationary, finite state, discrete time parameter, Markov and semi-
Markov chains, although there are other interesting applications. For instance, this problem
arises in solving Leontief input-output problems (Gale [81) and when determining the value
associated with a given basis when optimizing over Leontief substitution systems (see Veinott
(341 and Koehler, Whinston, and Wright 1141). It also arises when using finite element and
finite difference approximations to partial differential equations (see Varga 1331, Young 1371,
Reid [261, and Fox 171). In the latter case, P is usually symmetric and much of the modern
advanced numerical analysis that deals with this problem exploits that fact, and is therefore not
applicable to the Markov or semi-Markov chain case, since P is rarely symmetric then. Per-
tinent discussion of this problem in the context of Markov and semi-Markov chains can be
found in references 121, 14-61, 112-14), 1161, 119-251, 130-321, 1351, and 1361.

The objective of this paper is to shed light on two questions. First, which iterative
methods, among a number of candidates, offer the most promise? Second, when are iterative
methods preferred to Gaussian elimination? A set of twenty-seven Markov chain problems is
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generated and used to compare the various methods identified. There are nine problems with
50, 100, and 200 rows each. The rules used for generating the problems are described briefly in
the appendix. The next section introduces some notation and sections 3-6 deal with the first
question, regarding the promise of certain iterative methods. Section 7 deals with the second
question and section 8 summarizes the conclusions of the paper.

2. NOTATION

We use the notation and conventions of Porteus [22], so only a partial exposition of them
is given here. The L_ norm is used exclusively. The iterative methods we consider can be put
into the form v" - i + Pv"-1 when no extrapolations are used, where ? and P3 may well be
induced from an implicit transformation. The tildes are suppressed whenever clarity .
preserved. We assume that P > 0 and p (P) < 1. Let a denote the vector of row sums of P,
a the minimum row sum, and & the maximum row sum. In the Markov chain case, a = i,
and, in the semi-Markov chain case, a K 5. The sequence {vi} converges geometrically at the
rate 0 if 0 < jS < I and there exists a real number M such that IIv" - v *I I <3"M for all n.
The sequence converges geometrically at the" rate P if it converges geometrically at the rate y for
all y > f. The subradius of P is denoted by p *(P).

3. COMPARISON OF PRE-JACOBI AND GAUSS-SEIDEL ITERATION FOR
MARKOV CHAIN PROBLEMS

It is well known that if Pre-Jacobi iteration starts with v' >, v' '(so that vn"' >
v, > ... > v°) then Gauss-Seidel iteration yields V > v' for all n, where IVn) denotes the
sequence generated by Gauss-Seidel. A common interpretation of this result is that Gauss-
Seidel is faster than Pre-Jacobi. We shall argue that this interpretation is misleading at best.
Starting with a specified e > 0, the object of an iterative method here is to obtain an estimate
Vest of v such that IIvest - vII/IIv*I 14 -E is guaranteed. (We used e = 10-6 in all of the
numerical work discussed in this paper.) A stopping approach consists of a technique for con-
structing vest from the data generated by the method and a rule for stopping the computations
that guarantees live. - vII /l v"II < e.

There are two important alternative approaches that we wil' discuss. The first uses v" as
the estimate of v° and stops when 1Ivn- v"-1l/v1ll K e(1 - )/[U(1 + )]. This rule
derives from the classical bound

1lvn- v*ll < IIPII". llvn- va-11l/(l - l1/pll).

since lIPII - 5.

The second approach selects

vest - v' + i(a, + b.)/[2(1 - i)],

where a.: - min (vi- v( - ') and b. :- max (vt- vi - 1) and stops when bn - a. 4 2e(0 - a)

IIveIl/Pi(1 + *)l, This rule derives from the bounds of Porteus [241. It improves on the first
because 6, - a. 4 211v' - vn'-lI always holds, often with a substantial difference since
vn > v- I means that a. > 0.

At this point, one might well ask what the above has to do with a comparison between
Pre-Jacobi and Gauss-Seidel. If the first stopping approach is used, then clearly
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iji'"- v*i < fjv- v1i, giving favor to Gauss-Seidel. However, if the second approach is
used, then favor can swing to Pre-Jacobi. For Markov chain problems, Pre-Ja'cobi is equivalent
to relative value iteration, which converges geometrically at the "rate" p *(P). (The equivalence
holds only when the second stopping approach is used.) Gauss-Seidel converges geometrically
at the "rate" p(P), where P denotes the implied transition matrix. Thus, if p *(P) < p( 0),
which is very possible, Pre-Jacobi has a better guaranteed speed of convergence than does
Gauss-Seidel.

To assess the extent to which the observations above are borne out in examples, we
applied both Pre-Jacobi and Gauss-Seidel with each of the stopping approaches mentioned to
the twenty-seven problems generated. For Gauss-Seidel, the second stopping approach used
the appropriate specialization of the results in Porteus [241: V, > V-1 implies that the selection
is

ves, - 7V + .5 [a a,/(I - a) + ibnl( - _)].

which guarantees that lives - vii *< .5 [ib,,/(l - a) - aa./(I - a)]. The trivial scalar extra-
polation was used after each iteration of Pre-Jacobi to reduce roundoff errors. Doing so has no
effect on the results in the absence of roundoff errors. However, we could not use that extra-
polation when applying Gauss-Seidel because it affects the results. Indeed, it can yield a diver-
gent method. Provided the minimum and maximum row sums of the Gauss-Seidel matrix are
not too close (which was the case in all of our examples), the effect of roundoff errors is
significantly smaller than the effect when Pre-Jacobi is applied. Thus, the comparison is not
significantly affected by the fact that measures were taken to control the effect of roundoff
errors for Pre-Jacobi but none were for Gauss-Seidel.

The results are summarized in Table 1. Some of the detailed results appear later in Table
4, but comprehensive details are omitted here because there was so little variation in the results
within each method. The results show that when the first stopping approach is used, Gauss-
Seidel is preferred to Pre-Jacobi, but that the opposite is the case with the second approach.
Indeed, under the second approach, Pre-Jacobi always required fewer iterations with the
differences ranging from 6, 14, and 17 up to 48. Incidentally, using Gauss-Seidel, the second
stopping approach always required 4 or 5 fewer iterations than the first.

TABLE 1 - Number of Iterations Required by Pre-Jacobi Iteration and
Gauss-Seidel Iteration Using Two Alternative Stopping Approaches,

for Twenty-Seven Problems

Stopping Iterative Number of Iterations

Approach Method Minimum Median Maximum
First Pi 112 123 128

GS 60 66 83
Second PJ 15 32 72

GS 56 62 78

To see that the differences can become more pronounced when the row-sums are close to
one, the probabilities in the nine problems with 50 rows each were scaled up so that their row-
sums changed from .9 to .99, and the four combinations were applied. Pre-Jacobi with the
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second stopping approach required approximately twice as many iterations whereas, not surpris-
ingly, the other three combinations required more than ten times as many. The second stop-
ping approach will be used exclusively, henceforth.

4. THE EFFECT OF REORDERING AND EXTRAPOLATIONS

The previous section gives examples in which Pre-Jacobi is preferred to Gauss-Seidel.
However, no reorderings or extrapolations were carried out in these examples (except that
which was done to control roundoff error). In Porteus and Totten [251 and Porteus (221, evi-
dence was given that both reordering and extrapolating can have a beneficial effect when
Gauss-Seidel is used. Therefore, both of these modifications were applied to the twenty-seven
test problems. The minimum remaining row-sum (reordering) method and the ow-sum extra-
polation were used. Both were introduced in Porteus [221, where they outperformed their
identified competitors on the numerical examples considered. The numerical results here are
summarized in Table 2. To attempt to make the comparisons between methods fair, the results
are reported in terms of normalized (Pre-Jacobi) iterations, which account for the additional
multiplications and divisions needed (such as for the extrapolations). Some of the detailed
results appear in Table 4.

TABLE 2 - Median Number of Normalized Iterations Required by Gauss-
Seidel with and without Reordering and/or Extrapolating

Iterative Number of RowsMethod Re ordering? Extrapolating?
Method 50 100 200 Overall

P1 No No* 40 30 32 32
GS No No 63 62 60 62
GS Yes No 43 36 35 36
GS No Yes 30.7 29.6 29.3 30.6
GS Yes Yes 17.8 18.4 20.3 18.5

'Except for control of roundoff error, as previously indicated.

The results show that both reordering and extrapolating provide beneficial effects on
Gauss-Seidel for the examples considered. Indeed, when both modifications were used,
Gauss-Seidel outperformed Pre-Jacobi in every instance, reversing the order of preference
observed in the previous section. This preference, for Gauss-Seidel (with reordering and extra-
polating) over Pre-Jacobi, appears to be valid even when the row-sums are very close to one, as
it was observed in the numerical examples in Porteus [221 in which row-sums were .9, .99,
.999, and .9999.

5. THE IMPLIED EQUAL ROW SUM TRANSFORMATION

This transformation converts a semi-Markov chain problem (with unequal row-sums) into
an equivalent Markov chain problem (with equal row-sums). It was introduced by Schweitzer
1271, discussed by Porteus 1211 and by van Nunen and Stidham [321 with a computational con-
text in mind, applied by Lippman 1151 to queuing optimization models, and studied by Serfozo
[291 with some general Markov decision processes in mind.
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It is called the implied equal row-sum transformation here because, computationally, it is
desirable to implement it in the following manner. Assume without loss of generality that
p,, = 0 for all i. Let w,:= (I - )/(1 - a,), where a, and a are as defined in Section 2. The
resulting iterative method (corresponding to applying Pre-Jacobi in conjunction with the
transformation) is as follows:

v = r + Pv"-

v" - w, i," + (I - wi) vV 1 for all i.

The implied row sums are all equal to ii.

If one starts with an unequal row-sum problem, then Pre-Jacobi will converge at the "rate"
of the radius (of P) whereas if the implied equal row-sum transformation is applied, yielding an
induced transition matrix P, then Pre-Jacobi will converge at the "rate" of the subradius of P.
Thus, it is not necessarily clear that this method will converge faster than Pre-Jacobi applied to
the original problem.

To observe the potential of this method, it was applied to two sets of twenty-seven semi-
Markov chain problems. Both sets were derived from the original twenty-seven Markov chain
problems. Each time Gauss-Seidel is applied to a Markov chain problem using a particular ord-
ering of the states, there is an induced transition matrix with unequal row-sums. Such a transi-
tion matrix can be interpreted as representing a semi-Markov chain problem. The method dis-
cussed in this section is then applied to that problem. The first set of semi-Markov chain prob-
lems derived from applying Gauss-Seidel to the original matrices and the second set from
applying Gauss-Seidel to the reordered matrices. In the first set, the implied equal row-sum
(IERS) method reduced the median number of normalized iterations from 62 to 47.1. How-
ever, the figures are 36 and 64.9, respectively, for the second set. A partial explanation of this
reversal in performance may involve 5 - a, the difference between the maximum and
minimum row sums. When this difference is large, IERS entails large implied diagonal entries,
which correspond to a large subradius. In the first set of problems, this difference was rela-
tively small, with a median value of .19, whereas it was larger in the second set of problems,
where the median was .31. Thus, it seems doubtful that IERS will yield improved results in
general. Indeed, when the row sum extrapolation was used instead of JERS, the median
number of normalized iterations was reduced from 47.1 to 30.6 for the first set of problems and
from 64.9 to 18.5 for the second. However, IERS may yield improved results in problems in
which i - a is quite small. Furthermore, in semi-Markov decision problems, it may well be
valuable in selecting policies during the early stages of an algorithm, since it equalizes transition
times and reduces the sensitivity of the policy improvement step to the estimate of the optimal
return function.

6. REVERSIBLE GAUSS-SEIDEL

Reversible Gauss-Seidel (RGS) is simply an analogous method to what is called SSOR
(symmetric successive overrelaxation) in the numerical analysis literature (see Varga 1331 or
Young (371, for example). It consists of using Gauss-Seidel in a specified order during the first
pass of an iteration and in the reverse order during the second pass. An important advantage of
this method, as presented by Conrad and Wallach [11, is that with modest additional storage, a
substantial number of operations can be saved. For instance, if the original matrix has an equal
number of nonzero entries in its lower and upper triangular parts, then the second pass requires
only about one-half of a normalized iteration. Furthermore, if no extrapolation is made after
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an iteration, the first pass of the subsequent iteration also requires only about one-half of a nor-
malized iteration. (If an extrapolation is made, then the first pass of the next iteration requires
a full normalized iteration.)

When the row sum extrapolation was used, RGS required a median of 24.3 normalized
iterations over the standard twenty-seven problems and 16.7 when the matrix was reordered.
Note that each iteration requires roughly 1I12 normalized iterations, because an extrapolation is
made after each iteration. If an extrapolation is likely to have little effect on the current iterate,
it might be useful to skip the extrapolation, so that the next iteration would require merely one
normalized iteration. A modification based on this idea was tried. Let v" denote the nth iterate
and 0, the result after applying the two passes of the iteration, before any extrapolation. The
rule used was: if

min (61'" - v1) < 0 < max 01' 
- vn),

I i

then do not extrapolate. This modification brought the median number of normalized iterations
down to 19.3, and to 15.5 for the reordered matrices, which represented the best performance
obtained over all methods tested during this study. Detailed results appear in Table 4.

7. COMPARISON OF ITERATIVE METHODS AND GAUSSIAN ELIMINATION

rt is well known that iterative (indirect) methods, such as Pre-Jacobi iteration, take less
computational effort to obtain a practical solution to our problem than do direct methods, such
as Gaussian elimination, as long as the number of rows is sufficiently large, provided that P is
fully dense (pij > 0 for all i and j). It is plausible to speculate that the result is true when P is
sparse as well. Our numerical results will support this claim. Indeed, they will give insight into
the approximate combination of problem size and density for which an iterative method is pre-
ferred to Gaussian elimination.

The effectiveness of Gaussian elimination is significantly affected by the rule used for

selecting the pivot elements. A rule which "has proved to be satisfactory over a very wide
range of problems," according to Reid (261, is the one proposed by Markowitz [171. It itera-
tively selects as the next pivot element one that satisfies a numerical stability criterion and
minimizes the product of nonzeroes in its column (over other unanalyzed rows) and nonzeroes
in its row (over other unanalyzed columns). In general, all nonzeroes in the unanalyzed subma-
trix (the matrix composed of unanalyzed rows and columns) are considered as possible pivot
elements. In each of the problems generated here, the original matrix I-P is a diagonally dom-
inant M-matrix (see Varga [331 and Young 1371 for convenient discussions of M-matrices in the
context of iterative methods). A result by Fan [31 and an observation by Meijerink and van der
Vorst [181 guarantee that after pivoting on any diagonal element of a diagonally dominant M-
matrix, the remaining unanalyzed submatrix will also be a diagonally dominant M-matrix.
Thus, only diagonal entries were allowed to be pivot elements in our numerical work. This rule
guarantees that numerical stability will be maintained regardless of which diagonal element is
selected as the pivot element and eliminates the need to compute the indicated product of
nonzeroes for potential pivot elements except for the diagonal elements.

The object of the numerical work in this section is to compare Gaussian elimination with
the best found iterative method, which was reversible Gauss-Seidel with the matrix reordered
and using the row sum extrapolation occasionally, as specified by the rule discussed in the pre-
vious section. For convenience, we refer to this method simply as RGS in this section.
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With the accuracy criterion used to stop RGS (see Section 3) and the computer used,
both RGS and Gaussian elimination yielded results of comparable accuracy. To be conservative
on the side of favoring Gaussian elimination, the multiplications needed to select the pivot ele-
ments were not counted. Furthermore, we assumed that a data structure was used with Gaus-
sian elimination that required multiplications to be carried out only when two nonzeroes were
to be multiplied together. This assumption also favors Gaussian elimination.

The results appear in Table 3. The first two columns indicate parameter. values used to
generate the problems: the maximum probability size and the maximum number of nonzero
probabilities in each row. The third column refers to the average number of nonzero probabili-
ties in each row (averaged over the rows for a given problem). The range shown corresponds
to the minimum and maximum such averages over the three problems represented in that row.
Before discussing the results, it is worth mentioning that the Markowitz ordering gave substan-
tially better results for Gaussian elimination than was obtained with either the original, essen-
tially random, ordering or the ordering used by RGS. Indeed, use of the original ordering
required anywhere from 1.6 to 7.3 times as much work, with an average of 4.5, as the Mar-
kowitz ordering.

TABLE 3 - Number of Normalized Iterations Required by RGS and Gaussian
Elimination (GE)

Number of Nonzero Nme fRw
Probabilities per Row

MxmMaximum Actual 50 100 200
Probability Mxmm Range RGS GE RGS GE RGS GE

.9 3 2.4-2.5 19.4 5.5 15.6 9.6 18.1 29.3

.75 3 2.7 16.6 6.4 13.8 13.1 17.1 41.9

.9 5 2.6-2.7 18.9 8.9 15.6 12.8 23.1 43.5

.9 10 2.7-2.8 16.6 10.0 14.2 16.2 17.5 37.4
.6 3 2.9 15.7 6.7 15.7 17.6 15.6 54.4
.63 5 3.4-3.5 15.5 11.1 12.1 29.5 14.6 78.1
.54 10 3.9-4.1 13.1 16.1 13.4 35.9 13.5 101.8
.36 5 4.7-4.8 11.5 19.7 12.8 52.2 12.6 151.4
.18 10 9.5-9.6 11.0 31.3 110.9 81.8 11.0 268

The results support the claim that for problems of a given density (number of nonzero
elements per row) an iterative method (RGS~ in this case) will outperform GE for problems
with sufficiently many rows. Indeed, they support the hypothesis that, for fixed density, the
number of normalized iterations (total number of operations, respectively) required by RGS is
a constant (linear, respectively) fu,. (ion of the number of rows. Similarly, for Gaussian elimi-
nation, the supported relationships are quadratic and cubic functions for normalized iterations
and total work, respectively.

The numerical results also support the hypothesis that for problems of a given size
(number of rows), an iterative method will outperform GE for problems with sufficiently high
density. For Gaussian elimination, higher density is apt to imply a larger number of fill-ins
(newly created nonzeroes) of the unanalyzed submatrices as the partial pivoting is carried out.
Such fill-ins tend to compound themselves and cause the number of multiplications required to
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TABLE 4 - Number of Normalized Iterations Required by Various Algorithms on Each Problem

Problem Algorithm

---NR ---NNZMA E PJGSII GS21 GSI2 GS22 RGI2 RGI3 RG22 RG23 Gill G121

72 78 46 37.2 28.9 28.7 20.6 24.8 19.4 66.9 62.7
100 3 9 9.6 36 62 34 39.3 23.7 29.4 23.7 17.7 15.6 51.0 76.5
200 3 9 293 42 62 29 35.9 23.4 344 24.5 23.6 18.1 58.7 8801

50 3 .75 6.4 52 74 41 34.0 23.0 26.8 20.6 19.4 16.6 57.8 61.9
I00 3 *5 13.1 33 61 32 35.3 18.9 24.7 22.3 16.4 13.8 48.1 78.3
200 3 75 41.9 36 62 35 31.1 22.9 26.5 21.3 21.9 17.1 49.3 71.3

50 5 9 8.9 42 56 33 42.5 23.2 28.3 21.4 22.6 18.9 66.5 85.8
100 5 .9 12.8 49 67 32 39.8 24.5 31.7 21.4 18.3 15.6 60.9 88.6
200 5 9 43 5 40 57 26 40.8 27.1 37.3 26.1 32.1 23.1 57.6 90.5

50 10 9 10.0 46 65 38 31.2 16.1 28.5 19.6 17.0 16.6 56.3 75.5
100 10 .9 16.2 41 63 31 29.6 17.4 36.1 26.4 17.0 14.2 50.5 76.4
200 I0 .9 37 4 36 59 26 35.4 20.3 26.6 21.5 18.1 17.5 49.5 90.8

50 3 6 6.7 40 70 43 30.6 21.2 24.5 19.3 19.5 15.7 48.5 52.5
100 3 6 176 30 61 36 32.0 18.5 22.5 19.2 16.7 15,7 45.8 71.5
200 3 6 54.4 32 62 36 29.3 18.5 24.3 20.2 18.3 15.6 47.1 68.7

50 5 63 11.1 30 60 37 30.7 17.8 21.6 17.7 16.4 15.5 42.6 62.0
100 5 63 29 5 29 63 36 25.7 16.6 19.6 16.8 14.5 12.1 44.1 64.9
200 , 63 78 I 28 57 36 24.2 20.3 21.5 17.8 16.5 14.6 43.8 63 1

50 10 54 16 1 25 63 44 22.2 14.7 17.9 16.6 12.7 13.1 37.5 54.9

1(t) 10 54 35.9 25 62 38 25.9 18.4 17.8 16.5 13.0 13.4 36.1 62.3
200 10 54 101,8 25 60 35 26.1 17.3 19.6 17.6 14.3 13.5 39.0 71.6

50 5 36 1 197 23 63 45 18.0 15.5 15.7 14.5 12.7 11.5 33.9 46.0
100 S 36 52.2 22 62 43 18.0 16.8 17.1 14.4 13.0 12.8 36.4 47.3
2001 5 .36 1514 22 58 38 20.3 17.9 17.4 15.5 12.7 12.6 38.7 53.2

50 10 .18 31.3 15 63 51 14.3 10.9 13.2 12.0 11.0 11.0 27.6 34.3
100 10 18 81 8 15 62 47 16.5 12.0 13.2 13.2 10.9 10.9 29.8 40.9
200 10 18 1268.0 16 61 47 15.4 14.3 13.3 14.3 11.0 11.0 27.6 398

Median 296 32 62 36 30.6 18.5 24.3 19.3 16.7 15.5 47.1 64.9
Mean 44.0 33.4 62.7 37.6 28.9 19.3 23.6 19.1 17.1 15.0 464 65.9

Symbols used in table:

NR Number of rows
NNZ Maximum number of nonzero elements per row
MAXP Maximum probability in each row
GE Gaussian elimination, using Markowitz ordering
PJ Pre-Jacobi using trivial scalar extrapolation for roundoff error control
GS1 I Gauss-Seidel, using original ordering and no extrapolations
GS21 Gauss-Seidel, using reordered matrix and no extrapolations
GS12 Gauss-Seidel, using original ordering and row sum extrapolation
GS22 Gauss-Seidel, using reordered matrix and row sum extrapolation
RG12 Reversible Gauss-Seidel, using original ordering and row sum extrapolation
RG 13 Reversible Gauss-Seidel, using original ordering and modified row sum extrapolation
RG22 Reversible Gauss-Seidel, using reordered matrix and row sum extrapolation
RG23 Reversible Gauss-Seidel, using reordered matrix and modified row sum extrapolation
GIlI1 IERS after Gauss-Seidel on original ordering, using trivial scalar extrapolation for

roundoff error control
G121 IERS after Gauss-Seidel on reordered matrix, using trivial scalar extrapolation for

roundoff error control
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increase significantly. On the other hand, if anything, RGS appears to require fewer normalized
iterations as the density increases. An explanation of this observation may have something to
do with the following. RGS appears to converge at least as fast as Pre-Jacobi which (when
applied to Markov chain problems) converges at the "rate" of the subradius of the transition
matrix. Morton and Wecker 120] discuss some upper bounds on this subradius. These are
called n-Hajnal measures because they are based on the work of Hajnal [9, 10]. These upper
bounds are likely to decrease as the density is increased, for problems of the type generated
here.

8. CONCLUSION

This paper has tried to provide some insights into the questions of which iterative
methods hold the most promise for computirg the expected discounted return in finite Markov
and semi-Markov chains and when iterative methods are preferred to Gaussian elimination.
For the first question, the results are inconclusive for two reasons. One, not all, competing
methods were tested. For example, Verkhovsky's [351 method was not tested. Two, specific
rules were used to randomly generate the twenty-seven problems used to test the methods. It
is unclear that the results found here will apply to other problems. Nevertheless, there were
some clear observations that applied to the problems that were generated. Gauss-Seidel is not
preferred to Pre-Jacobi for Markov chain problems in general, although it is preferred if the
matrix is reordered and the row-sum extrapolation is used. The implied equal row-sum
transformation did not yield improved results. Reversible Gauss-Seidel did yield slightly
improved performance, provided that the matrix was reordered and the row-sum extrapolation
was used. A further slight improvement was obtained when a rule for only applying the extra-
polations occasionally was used. Whether these improvements are worth the extra coding
needed to implement them remains to be seen. However, it appears that iterative methods are
preferred to Gaussian elimination for some problems with as few as 50 rows and for many
problems that have 200 rows or more.

APPENDIX: PROBLEM GENERATION

All twenty-seven problems generated were Markov chain problems with a discount factor
of .9 (a -- a - .9). Three other parameters were used to generate the problems. Their values
for each problem are shown in Table 4. NR is simply the number of rows. NNZ and MAXP
were used to generate the probabilities in a row.

The locations of the nonzero probabilities in each row were generated randomly. Working
sequentially, a location was chosen from a discrete uniform distribution over the positions not
yet having a nonzero element. The values of the elements were generated from a discrete uni-
form distribution on the interval [.001, qi where q :- min (MAXP, REM), and REM is the
discount factor less the cumulative sum of probabilities already generated in that row. If the
resulting cumulative row sum did not equal the discount factor and the maximum number of
nonzero elements (NNZ) had not yet been attained for that row, then another location was
generated. Because a minimum element size (equal to .001) was used, the maximum number
of nonzero elements was not always attained. The last nonzero element generated in each row
was adjusted so that the row sum would equal the discount factor.

The immediate returns (making up the vector r) were generated as follows. The first ten
were set equal to 10n, where n denotes the row number. The last was set equal to zero, and
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the remaining ones were generated from a continuous uniform distribution on the interval (0,
1). The rationale behind this rule is outlined in Porteus 122).
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ABSTRACT

We investigate a two-echelon (base-depot) inventory system of recoverable
(repairable) items. The arrivals of demand at the bases are in a Poisson
manner and the order sizes are random. The failed units can be repaired either
at the base or at the depot, and the units beyond economic repair are con-
demned. Inspection of the failed units is carried out in the batches they arrive.
that is, arrival batches are no! broken up. The exact expressions for stationary
distribution of depot inventory position, and of the number of backorders, on-
hand inventory, in-repair inventory at all locations are derived under the as-
sumptions of constant repair and lead times. Special cases of complete recover-
ability, nonrecoverability, and of the unit order size are also discussed.

1. SYSTEM

Consider a two-echelon inventory system consisting of a set of bases (lower echelon) and
a central depot (upper echelon). Each location, in addition to being an item stocking point, has
facilities to perform repairs. Figure I shows the schematic diagram of the system under con-
sideration. The system demands are generated at bases. Customers while placing requisitions
for certain number of items, turn in a like number of failed units. The item stocked in this
system is recoverable. Upon failures, units are returned to base where a decision is made Cther
to remove (condemn) the units from the system or to perform repairs on them either at the
base itself or at the depot in order to restore the units to a serviceable condition. The decision
to repair or to condemn the failed units is based on the degree and the nature of failure, the
repair facilities available, and the economics involved. Once an item is designated as recover-
able, it is presumably more economical to repair the itemr than it is to dispose of it and replace
it with a new item.

The system is further characterized by the following descriptors:

(1) Arrival Pattern and Order Size. The failures which generate the system demands
occur in a Poisson manner with known and constant rate. Upon such failures, a random
number of units is demanded for replacement.

(2) Resupply at Bases and Depot. The bases are resupplied as necessary only by the
9 depot. That is, lateral supply among the bases is not allowed. The procurement of items from
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FIURE~ I. Two-echelon inventory system for recoverable items

l the external supplier to make up for the condemnations k,: made only by the depot. Each loca-
tion, in addition, receives supplies from its repair station.

(3) Inspection Policy at Bases. The inspection of failed units is carried out at the same
base where the requisition for replacement arrived immediately after failure. Two inspection
policies suggest themselves. The first policy, Batch Inspection Policy, determines if a batch of
failed units as a whole is either base repairable, depot repairable or condemnable. From a prac-
tical view point, this policy represents situations where the units of a batch (or a module) fail
simultaneously for the same reason and the extent of damage is the same for all units within
the batch. In the second policy, Unit Inspection Policy, each failed unit in a batch is inspected
independently to determine whether the unit is base repairable, depot repairable or condemn-
able. This policy represents the situations where units failed under difficult conditions but are
submitted in a batch for replacement, or the situations where decision is very critical and calls
for inspection of each individual unit in a batch. In this paper we shall consider Batch Inspec-
tion Policy. It is further assumed that the inspection takes negligible time.

(4) Procurement Policies. The bases use an (s - I, s) policy for procurement of units
from the depot. The depot procurement policy is a general continuous review (s, S) policy.
Policies at all locations are in terms of inventory position defined to be the sum of on-hand.
on-order and in-repair inventories minus any backorders.

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 4. DECEMBER 1981

- ~ ~ ~ WT FALE UNITS.. NJ: SUPPL--...... IED UNITS Nl -"-

L 0_ W E R



TWO.E'IHLON INVENTORY SYSTEM FOR RICOVLRABLI. ITEMS 58)

15) Backlogging. Demands occurring when a location is out of stock are backlogged.
Further, partial backlogging of' demands is allowed. For example, upon arrival of a requisition
if the base does not have the number of' units demanded, then all the units on hand are sup-
plied while the balance is backlogged. The respective base, however, accepts the whole batch of
failed units and starts the inspection. Similarly, partial backlogging is done at the depot for the
base demands.

(6) Repairs. There are ample repair facilities at each location. The repair times at the
bases and at the depot are deterministic and independent of arrival process and of the number
of units in repair. Furthermore, the depot repair time is the same for all the units received
from all the bases. Repairs at all locations are carried out in a continuous manner-that is, no
batching is done. Upon completion of repairs, the units immediately join the stock of service-
able items.

(7) Shipping and Lead Times. The time to ship a depot-repairable unit to the depot from
a base is assumed to be negligible. In reality, it can be absorbed in the depot repair time. The
order-and-ship time of unit from depot to a base is assumed to be deterministic. Similarly,
order-and-ship time of an order from external supplier to the depot is also deterministic.

The objective function of the total expected cost and several measures of performance of
the inventory system are related to the stationary distribution of depot inventory position, and
number of backorders, on-hand inventory, and in-repair inventory at different locations. Our
objective in this paper is to determine the exact expressions for stationary distribution of these
inventory levels.

A fundamental work on two-echelon inventory system was the development of METRIC
by Sherbrooke [71 for a completely conservative system that does not allow item condemna-
tions. He considered the problem of allocating several units among a depot and several bases in
order to minimize the total expected number of backorders at bases within the limitations of a
budget. The resulting expressions for stationary distribution of backorder, however, are
approximate. A variation of the METRIC model was introduced by Simon [81 to obtain the
exact expressions for stationary distribution of backorders, allowing condemnations. Simon's
analysis was limited to the case of unit order size. For unit order size, Muckstadt [2, 31 has
presented analyses of the system where bases use (s, S) and (r. Q) ptocurement policies.
Shanker [51 has analyzed the case of random order size with condemnations, the condemnation
rates, however, were assumed to be the same at all bases. Our present analysis is more general
than previous works in that random order size and condemnations both are considered. It.
however, is less general than METRIC in that repair times here are assumed deterministic.

2. MODEL

We consider a two-echelon system as depicted in Figure I with J bases, the bases num-
bered from I to J and the depot indexed as 0. The failures which generate the system demands
occur in a Poisson manner with known rate X, at base j(j = 1, 2. J). Upon such failures
at base j, the number of units demanded, or equivalently, the number of failed units turned in,
has probability mass function 0,(k), k > 1, with finite mean. In the present context of batch
inspection policy, the entire batch of failed units is repaired at the base with probability r, is
shipped to the depot for repair with probability (I - r,) p., or is condemned with probability
(1 - r1)(I - p1). Thus at the base, the requisitions are of three types: base-repairable, depot-
repairable and condemnable.
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Notation

Aj - the rate of Poisson arrival of requisitions at location j(j 0 O, 1. J),
0, -= the probability mass function of order size at location j(i = 0, 1. J),
r, - the probability that a batch is repaired at base j(j = 1, 2 . 1, J),

p1 - the probability that a batch which is not repairable at base j is repaired at the
depot; (1 - p) is, therefore, the probability of condemning a base-
nonrepairable batch (j = 1, 2 ..... J),

(sj - 1, s)) = the procurement policy at base j(j = 1, 2. J),
(so, SO) = the procurement policy at the depot

Rj -= the deterministic repair time at location j (I = 0, 1. J),
-j = the deterministic delivery time from the depot to base j(j = 1, 2. J),

To = the deterministic procurement lead time from the external supplier to the depot,
N( t) = the total number of requisitions that arrive at location j during the interval

(0, 1 ( = 0, 1 ... J),
Ni(t) = the number of requisitions at base j during the interval (0, t] for which the

entire batch was declared base repairable ( = 1, 2. J),
N(t) = the number of requisitions at base j during the interval (0, d] for which the

entire batch was sent to the depot for repair j = 1, 2 ..... J),
Nf(t) = the number of requisitions at base j during the interval (0, d] for which the

entire batch was condemned (Q - 1, 2 ..... J),
No(t) -= the total number of requisitions placed at the depot by base j during the inter-

val (0, t] (j.= I. 2. ),
No(t W= the total number of requisitions at the depot during the interval (0, t] as a

consequence of condemnations at the lower echelon,
ND (t) = the total number of requisitions at the depot during the interval (0, t] for

which the batches were found depot repairable.

The variables Dj  (t), Df(t), D (t) Dj0W, D(t) and DD(t) shall denote the
number of units demanded by the corresponding requisitions N(t), N L), Nj(t), NF(t),
NW°(), No(t), and Ng(t), respectively. For instance, D°o(t) denotes the total number of units
demanded from the depot by base jduring the interval (0, t], (j = 1, 2. J); and so on.

QjW)= the in-repair inventory at time tat location j(. = 0, 1 . P,
Zj(t) - the inventory position at time tat location j(j - 0, 1. J),
Bj) - the number of backorders at time t at location i ( - 0, 1. J) (Negative

backorders indicate on-hand inventory),
Uj(1) - the total number of units on order plus in repair at time t at location jQj - 0,

P[nlm] - e I , n - 0, 1, ... (Poisson distribution with mean m),

CPkI]qI, fI -- , e-AI( t)n ft t (k), k - 0, 1, ... (Compound Poisson distribution with

n-0 n!
parameter A t and compounding distribution f);

f" () - n-fold convolution of density function A'),
E0 - (so + 1, so + 2 ..... SO), the state space for inventory position at depot,

N(01, t2) - N(t 2) - N(t) for the process N(t), t > 0).
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Lower case letters denote a particular realization of a random variable.

We note the following implications of our assumptions:

(a) Obviously, Nj(t) - Nj(t) + Nf'(t) + Nf(t), for all t > 0. It can be easily seen (see
references [51, [81) that the processes {NS(t), t > 01, (Nf(t). t > 01, and (NfD(), t > 01 are
mutually independent Poisson processes with parameters X! - rjAj, xf7- (I - rj)(I - p )kj,
and XD= (1 - rdp kj, respectively, for j - 1, 2 . . Consequently, the demand
processes [Djl(t). t 01, {Df(t)t > 0) and IDJD(t), t > 01 are compound Poisson processes
with parameters \ B , X f and X f, respectively, and have a common compounding distribution
4 j(').

(b) Because the bases use an (s - 1, s) policy, N°(r) - Nf(t) + NjD(t), for all t >, 0
and j = 1, 2 ... J. Consequently, (N°(t), t > 0) is a Poisson process with parameter
A._-c + XP. Furthermore, because the bases operate independently, {N0c(t), t > 0 andJ

(No'(t), t > 0) are independent Poisson processes with parameters kf= k Ac and
Jj-1

,D = E xf, respectively. Moreover, NOWt) - Ng(t) + No(t) for all t > 0, and thus

{N0 (t). t 01 is a Poisson process with parameter X0 = x A°. Again it can be shown (see

reference [51) that the demand processes {D0(), I > 01, IDC(,t), > 01 and (DD(t), I > 0)
are compound Poisson processes with parameters X0, Xc and X D- and compounding distribu-
tions 0o.(), O0 -• ) and 0D(•), respectively; where

I~ jC,~
0o(k) - - , 4(k). k ) = T I 4,j(k)

j-I 0 j-1

and

D ).j'j(£); for k = 1, 2,' /)= 0 j-1,..

(c) As a consequence of the --j -1, sj) policy at base j, Zj(t) - sj for all I > 0, or
equivalently, UI(t) - B(t) - sj fi t> 0. Then for any b E {-s,, -sj + 1 . 0,1...) }
and for any t > r0 + Tj; the event Bj(t) = b occurs if and only if U() - sj + b.

(d) Because of the infinite number of repair facilities and constant repair times, the units
in repair at base j at time t (>Rj) will be due to the base repairable failures occuring only in
(t - Rj. tJ; that is Qj(t) - D,1(t - Rj, t). Thus for t > Rj, Qj(t) is a compound Poisson
with parameter XfR, and compounding function 46('). Similarly, Q00) is a compound PoissonJD

with parameter A0 Ro and compounding distribution e0(.).

We first describe the basic approach for determining stationary distribution of system
backorders in Section 3. In Section 4, the stationary distribution of backorders/on-hand inven-
tory at bases is obtained. The results for in-repair inventory are obtained in Section 5, and
those for depot backorder/on-hand inventory are given in Section 6. The special cases of com-
plete recoverability, nonrecoverability and unit order size are discussed in Section 7. Section 8
indicates applicability and applications of the results derived in the present study.
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3. BASIC APPROACH FOR STATIONARY DISTRIBUTION
OF SYSTEM BACKORDERS

We emphasize that the system backorder means the backorders at the bases. Depot
backorders are of interest only in so far as they affect base backorders. Stationary distribution
of Z 0 (t), t > 0), the inventory position at the depot, will be required to derive the expres-
sions for stationary distribution of backorders at bases. The depot, for this purpose, can be
treated as a single location system where arrive two types of demands, recoverable and nonre-
coverable, and the corresponding processes IDD(), t > 0) and (D0(t), t > 0) are indepen-
dent compound Poisson. Further, the depot inventory position changes only at the arrival
epochs of nonrecoverable demands from the bases. It remains unchanged at the arrival epochs
of recoverable demands because in case of recoverable demands, on-hand inventory decreases
and in-repair inventory increases by the same amount with no change in inventory position.
Then stationary distribution of (Zo(), t > 0) is given by (see Sahin [41, Shanker [51, Tijms
[91),

re(So - k)I+M(So - s-l) s 0 + I < k <S 0 - l

(1) lim PrZ 0 () = kIZ 0 (0) = i} = 0 (k) = I

1 + M(S o - so - 1) kS

where
k-I

m(1) = 01o(l); M(k) = O'(k) + 0 o (k - q)m(q), k > 2
q-I

and
k

M(k)= m(p), k I 1.
p-I

To find the stationary distribution B7(b) = lir Pr(Bj(B ) = b) at base j, we first obtain

Pr(Bj(t) - b), or equivalently Pr)Uj(t) = sj + b) for b E I-s, -sj + 1 ... 0, 1, ... ) and
then evaluate B*('). We shall follow the approach suggested by Kruse and Kaplan 1].

Referring to Figure 2, the only units that can arrive at base j from the depot by time I are
those on order by time t3. This depends on the total assets available at the depot by time t3,
the total demand at the depot during the interval (t, t3], and the sequence of arrivals of
requisitions at the depot from bases during the interval (l, t3]. This is so because the units on
order through time tj will have arrived at the depot from the external supplier by time t3. The
total assets available at the depot by time 13 include the units on hand minus any backorders at
time ti, the units on order at time 't, the units in repair at time t1 and the units received for
repair during the interval (11, 12]. This equals zo(t) + doD(i, 2). Now the following two
mutually exclusive situations are possible:

(A): The total depot demand during the interval ('i, t21 does not exceed the total assets
available by time 13; that is,

dk( 11 t2) + dgC(t 1, 12) < Zo(1) + dk(i, 12)
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it2 t3  t

FIGURE 2. Time intervals at base j

or

d~o~tl, 12) < Z0(td-)

Thus all the depot demands d0(ti, t2) = d( 1 , t2) + dC(tl, 12) are satisfied by time t3. Only
the depot demands do(t2, t3) against the stock of Z0(t) - dc(t, '2) units available by time 13

determine how many demands could possibly remain unsatisfied by time 13.

(B): The total demand during the interval (t, , t2] exceeds the total available stock by

time t3; that is,

d0(t,, t2) + 4&(0, t2) > ZO() + doD(t, t2)

or

d"(tl, t2) > ZOOtl)-

Thus there is no stock available at the depot at time t2 to satisfy the demands d0(t2, t3). Also,
there is no guarantee that all the d0o(t, !,) demands will be satisfied since this depends upon
the sequence of arrivals of No(t 1 , t2) and No(tt, t2). Hence, the total demand do0Gi, t2)
drawn against the amount of zo(t 1 ) + de(tl, t2) determines how many demands will remain
unsatisfied by time 13. We can write

(2) PrIBj() - b) - Pr{Us(t) = sj + b}

- [Pr(U(t) = sj + bIDIC(, t2)
ZO(tlEEodk(tl1t2

)

dC(ti, t2); Z0(t1) - Zo(1)} Pr(Dj(t, t2)

" dk(tl, 12); Zo(tl) - z0(1)}].

Using the independence of Dk(tl, 12) and Z0(01) we can express Equation (2) corresponding to
the cases (A) and (B) as follows:

(3) Pr(U1 (t) - sj + b) - (PrIU(t) - si + b) s + Pr(Uj(t) - sj + b18J
zo(tI) E o

- Pr{Zo( 1 ) - z0))

where

(4) Pr(Uj(t) - sj + b)A - y (Pr{Uj(t) - + bIOC(t,, '2) - d(t 1 . '2);

df(tl~t2)-O

Zo(t0) - zo(tl)} • Pr{D (, 1 , 12) - d(01, t2)11,
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and

(5) Pr(Uj(t) s, + b)B - " [Pr U(t)- sj + bIDk(t, t2)
d9g('.1 2) >Z0 ( 1)

= d(t,, t2); Z 0 (t1 ) - zo(t 1)) Pr(Dk(:, 12)

- 4 (t], 01)}]

For a given zo(t), Equations (4) and (5) represent Pr{Bi(t) - b) for cases (A) and (B),
respectively. In the next section we shall derive the expressions for Pr(11,(t) - sj + biA and
PrIJ(t) f= sj + b)B which upon substitution in Equation (3) will yield PrU(t) sj + b).

4. STATIONARY DISTRIBUTION OF BACKORDERS/ON-HAND
INVENTORY AT BASES

4.1 (A): Pr{U(t) =- sj + b)iA

To evaluate Pr(Uj(t) - sj + b}A using Equation (4), let

(t)= U)(t) + U2(t),

where

U'(t) W - the sum of units in repair at base j at time rand the units for which order were

placed on the depot by base j during the interval (03, t),

and

Uj2(t) - the units ordered from the depot by base j during the interval 02, t3] that
remain unfilled by time 13.

Because the arrival process is Poisson, U) (t) and U1
2(t) are independent. As mentioned ear-

lier, all the demands levied on the depot from base j during the interval (t3, d] will remain on
order at time t. Also the base repairable demands occurring only during the interval
(t - Rj, t] will be in the repair cycle at base jat time t. Thus U'(t) - Df(t - Rj, ) + Dc(03,
) + Dj( 3 , t), and the probability distribution of U)() can be easily obtained. The probabil-

ity distribution of U(t) requires considering the sequence of arrivals of requisitions from the
bases during the interval (t2, 13]. Once the probability distributions of U)(t) and U?(t) are
obtained, Equation (4) can be evaluated by taking the convolution of U)(t) and U2(t$. Since
Ui(t) is independent of Zo(t,) and Dg(t0, 12), we can write

(6) Pr(Uj(t) - sj + b)A -
o0(fI) [ s1+.b

, I Pr(Uj(t) - sj + b - di- PrIU(t) - dD(t, t2) -d(t], '2),

d d-O
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As observed in Section 2, U,() has a compound Poisson distribution ith parameter
AHPR, + (,('+ Xt)T, and compounding distribution 0,('). Therefore,

(7) Pr{U,1() = s, + b - d) - CP~s, + b - dlAlR, + (Al + kil )r,. 6j.

For the purpose of evaluating PrI U§(t) = d), the demands at the depot can be viewed as
arising from two sources. One, the base j for which the distribution is being determined and
the other being set of the remaining bases (see Figure 3). Let us denote this set by (r. that is,
(r = (I, 2 ......j - I, j + I ..... J1. Since the bases operate independentlk, the Iwo sources
are independent. For the source (r, we shall use the notations similar to those used for an indi-
vidual base. Thus, N,(t) denotes the total number of requisitions that arrive at source (r dur-
ing the interval (0, ti, and so on. The processes {N'(t), t > 01, IN, (,). 1 > 01 and {NI,(t),

> 01 are mutually independent Poisson processes with parameters X,a = .a, = ,1 ,
Er 

,Ear

and \D,= h respectively. Further, the demand processes {D(), r > 01. {D,(,

01, and ID,(), t W 0} are compound Poisson processes with parameters A,f, A,('. and ,/.
respectively. Their respective compounding distributions are:

X 1( (k), 0,'(k 0,(k) and

OD(k) = Io f.,,(,); for A > .

Also, the process IN' (W, t > 0) is a Poisson process with parameter k,' = : X' and the

demand process {D. (t), t > 01 is a compound Poisson process with parameter X,,r and com-

pounding distribution O.(k) - -- X°4i,(k), for A > i.
,Eo-

DEPOr

SOURCE j =BASE j SOURCE a = BASES 1 ,2'... ItiO+I,...}

FIGuRE 3. Lower echelon as two independent sourcesi and r

The random variable Uj(t) represents the units ordered from the depot by base j during
the interval (12, t31 that remain unfilled by time t. Referring to Equation (6), we shall obtain
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Pr IU/(t) dfD0( 1 , t2) d01'(, 12); Z(1) - :o(0)) by further conditioning on 13:)( "

i -. o. Let RA = N°(: 2. 13)- n,- N (2. t3) = n , D'(t.r2) -=d,(,l, t,), Z0(0 1) =

z(00)). Thus, we first obtain Pr(U, 20) - dIRA). and to do so we need to know the number
of requisitions at the depot placed during ((2. 131 and those completely satisfied by time 1l. Let

N'(t2. t3) = the number of requisitions from source i that arrived during (12, t3 and are
completely satisfied by time t3; for i = ., Y.

Suppose we are given RA and N(0 2, t3) - n;. Then U2(t) = d if and only if the sum of
the demands due to the unsatisfied n, - n) requisitions and unsatisfied units of possibly a par-
tially satisfied requisition (if from base j) equals d. Let EX denote the number of units sup-
plied to the requisition whose demand is only partially met. The range of the random variable
EX is from 0 to zo(t)) - d(t 1 , t2). When EX = 0, there is no partially satisfied requisition
and when EX z0 (1) - d (t), 12), no requisition is completely satisfied and
z001) - do 01, 12) units are supplied to the first requisition, if any (see Figure 4).

40 t,)

'i

4

12 t3 TIMEI
COMPEMYSATSF1 REUISTINS 'i SAISFIED

REQUISITION S

FIGURE 4. A sample realization of EX, N (/02, f3) and N. (t2, f3 ) given RA
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TWO-ECHELON INVENTORY SYSTEM FOR RECOVERABLE ITEMS 589

Let us introduce an indicator variable I such that I = i if the partially satisfied requisition

is from source i; i - j, a. Then we have the following:

(8) Pr U.2(t) dIRA; EX 0 , N; (1 2, 13) - n,; N,(r 2, (3) - n,)
(n -n,)

'-.6j J i(d);.
(9) PrJ 1

2(I) - dIRA, EX .=e > 0. N;(t 2, t3) -- n ; N (t2, 13) =n,; /I= r

,= 6 , (d);

and
(10) Pr{ (1/(t) -dIRA; LX = e > 0, N;(t 2. 13) = n; N,(2. 13) = I, = j

,d .f ( -fl- -1
- E (k + e). Oj (d- k).

k>O

The PrIU 2(1) - dlRA) can be obtained from Equations (8-10) by first computing
Pr(EX - e(>O); 1 = i, N(i 2, t3) = n N, 0 2 , t3) = n, IRA1, for i = j,o-. Let Y. denote the
number of units demanded from the depot by the kth (k >, 1) requisition during ((2, t31.

We consider the following two situations. One, where not all the requisitions during
02, t31 are satisfied by time 13, and the other, where they are all satisfied.

(i): 0 < n + n < nj + n,; nj + n, > 1, not all the requisitions in (12, t31 are satisfied
by time t3. We wish to compute

(11) Pr(EX = e; I = j; NJ(t2, t3) = n.;, N, (( 2, (3) = n,IRA}
= Pr(YI + Y2 + ... + ynj+n -= z0( 1) - do(l, 12) - e.

Y,,n;+, > e; out of the first (n; + n, requisitions at the depot n; are from source
j, and (n + n, + 1)st requisition is from source jIRA 1.

We have

(12) Pr{Yi + Y2 + + Y , z0(01) - dO(11, t2l - e; Y,+ 1,,+ > e(RAI

00 )+ : (zo(tj) - dc(t,, t2) - e). . ,(

p>e

Prlout of the first (nJ + n,) requisitions at the depot, n, are from base j, and (n, + n, + 1)st
requisition is from source j(RAI can be derived using the results on sequences of Poisson
arrivals (see Simon [8], Shanker [51) and is given by

(13) n; + in; + 1 inj
n+n+ + +
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Substituting Equation (12), and Equation (13) upon simplification, into Equation (12) we have

(14) Pr(EX = e; I = j; N(t2, t3) = n, N,(t2, 13) - n, IRA)

(nj - n;) 1:1 1:1 n ' (ot)-d' tf) e
(n, + n,) -(n'+n ,) In(- + n u

p>e

for e = 0, 1. z0 ( 1) - do'( 1, '2) - (n; + 4), 0 n; ( n/.

Similarly,

(15) Pr(EX = e; 1 = I ; N(t 2, 3) = n,; N,(t 2, 13) = nIRA}

(n, - _t) InJn. If 1 0(nj +) (zo(tj) - dc(t1 , t2) - e)

7(n+n) -(n+ n )I "+n

p>e

fore=0 1 0. z0(1) - do(t, 12) - (n; + n,); 0 ( <- ne.

On summing Equations (14) and (15), we have

(16) Pr(EX = e; N;(02, 13) = n;; N (2, 13) = nIRA}

In.1 In-
= n (0 (Z0 1t) -d(t. t2) -e) 0 o(P)

(n. + n] -P>e

for e = 0. 1 Z0( 1) - dO(, 1- t2) - (n; + n;), and 0 < n; + , <

(ii): n, + n - n, + n,,(.>O), all the requisitions in (2, 31 are satisfied by time t. In
this case we have

(17) Pr{EX - e; N;(12 , 3) - n; N;(0 2, t3) - nIRA}

- Pr((YI + Y 2 +.+ ... 4 zo(t1) - d 0(, t2)}
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(n'-- t t )

p + 0  fo r e - 0 , n - n , n , = n ,

nj + n, > 1;

- I l, for e = z0(t 1) - do(t,, t2),

n,= = n,-, n, = 0

0, otherwise.

From Equations (8-10) and Equations (11-17) we can obtain Pr{LU 2(t) dIRA}. For
computational convenience, however, we consider the following two cases: one where all the
demands from base i during (t2, t31 are satisfied by time t3, that is, d = 0, and the other where
some demands from base j during (02, t3] remain unsatisfied by time t3, that is, d '> 1.

(a): PrJU2 (t)- 0RA): From Equations (9) and (10) we conclude that given RA,
U2(t) - 0 if and only if nJ = nj(>0). For the case when all the requisitions at the depot in
(t2. 131 are satisfied by time t3, that is, when n' + n, - n + n,, Pr{U 2(t) - 0IRA} 1 . Then
from Equation (17), we have

1 for n. + n, = 0
Pr{U.(t) = 0IRA) = : 0(g)_d ,1 .,2)

0 (P) for n + n, > 1.
. [ P-'j

In other words,

(18) Pr(U2(t) =- 0IRA) = PROI (say)

zo(tl)-dk( t I -2 )

p-0 (n)

On the other hand, when n; + n' < n, + n,; that is, when not all the requisitions at the depot
during ('2, t31 are satisfied by time 13, then n, - n implies that n, < n,. From Equation (15),
after simplification, we have

(19) Pr(Uj2 (t) - OIRA} - PRO2 (say)

n,-o j + n,j! " (zo(,) - dcj(tl, '2) - e) 0 OWp11,

where the range of summation for e is from 0 to zo(t) - d(t,, '2)- - n .

(b): Pr(UJ2(t) - dIRAI, d > 1: From Equations (9) and (10) it is clear that given RA,
,2(t) - d( >,) if nj < n, and thus n+ n, < n,+ n, for nj > 1. From Equations (8-10)

and Equations (14-16), it follows that
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(20) Pr{U 2(t) dIRA) = PRD (say)

"j ,(+n ) I4
I 100' (zo(t, - dg(,1 , 12) e)

.5-0 %;-0o , nj e
n; + n,,- n; d n '-1

S (k + e) (d - k)

(n,+n,) n,'+n,

p>e

where the range for summation of e is from 0 to zo(ti) - dc( 0 1, t2) - n, - n,.

Now from Equations (18), (19) and (20), we obtain Pr(Uj2(t) = dIDg(1 , '2) = do(t 1 ,
t2); Z0 (t1 ) = z0()) by enumerating over Nj(t2, t3) and N,(t2, t3). Substituting the resulting
expression, and Equation (7) into Equation (6) we obtain Pr IUj() - Sj + b)4. Thus

(21) Pr(Uj(t) = sj + bA

Z0(tl) z0lt)-dk((l't2
)

= . CP[s, + bIXR, + X rj, O] I . , (PRO1) p[n, + nIXOROI
dok(tljr2)-O nf+"o.-O

+ ., , (PRO2) P[n,lX°Ro] PtnjI °Ro]

Sj+b

+ CPls1+b- dIXflR+X~r1 , 4,l•1 .J (PRD)'P[nIjARoI'PlnjX°Roj
d-I ,j-I ,O

SCP[dC(, 1 , t2)XC(rO- R0), c1.

4.2 (B): PrIUj(t) - sj + blB.

To obtain the expression for PrI ULt) = s- + b)B, we note that in case B all demands
levied on the depot during interval ('2, t] remain unfilled by time t. In addition, some
demands from the base j during the interval (, t2l may remain unfilled by time t3. Let for
this case

U'(t) - the sum of units in repair at base jat time tand the units for which orders were
placed on the depot by base j during (2, t]; that is, U( t)- Df(t - Rj, ) +
Df(t2 , ) + Df(t 2 t);

and

U(t) - the units ordered from the depot by base j during (, 12] that are unfilled by
time t3.
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Obviously U,(0) = UJ1 (t) + U2 (t), and U(0) and U,2(t) are independent. Therefore, the pro-
bability distribution of UL(t) can be obtained through the convolution of UL(t) and U1().
The probability distribution of Uj(1) can be readily obtained while that of U2(,) involves con-
sideration of the sequence of arrivals of requisitions at the depot during (1, t2]. Noting that
UJ'(t) is independent of Z0(01) and D( 1 , t2) and that Pr{UJI(t) =k
CP [kXfRj + X'(rJ + r0), ,1 from Equation (5) we have

(22) Pr{Uj(t) s, + b}8

CP[s, + b - d X"R, + x0(T, + R 0), Okjl
dS'(tl't2 >:0(yl ld-

0

* Pr(U2 () = dIDo(, 1 , t2) = d(1, t2); Z0 (11) = zO(ri)

• Pr{Dc(tj, t2) = d 2 (t, t)).

We shall obtain Pr(U/(t) = dID (t 1 , t2 = do(r td2, Z 0 (1) = z0 (t1)) by further conditioning
on N,(, 1, 12), NP(tl, t2) and D(, 1 , t2) for i = j, o,. We temporarily denote dC(tt, t2) by d0c .

Let

RBI = {NFc( 1, t2) = n = nP, (for i = j, a-); Z0(t 1) = zo(j)},

RB2 = DF 1, 12) = Dc(,. 12) -dk; 7 DPO(,, t2) =dO1

and

RB = RBI U RB2

Obviously, then
nC+N

C ) ,(D 4 D)(23) Pr{(RB2! RBI =10) j  (dc ) . O0( ' "D (D~).

To obtain Pr{Uj2(t)IRB) we need to consider the number and type (depot repairable or con-
demned) of requisitions that were placed by the depot during (1, t2 from each source and are
completely satisfied by time 3. For i = j, o,, let

NC( 1 , 12) - the number of condemnation type requisitions that were placed at the depot
during (1, t2] by source i and are completely satisfied by time 13;

N'01, t2) - the number of depot repairable type requisitions that were placed at the
depot during (tI, t2] by source i and are completely satisfied by time 13

Now suppose we are given RB, Nic(t 1 , t2) - n'c and ND( 1 , f 2 - n; for i - j, a. Then
Uj2(t) - d if and only if the sum of the demands due to unsatisfied (nn + )- n;C-
requisitions and unsatisfied units of a possibly partially satisfied requisition, if from source
(base) j, equals d. Here in case B we note that 0 < n'C + n'D + + n ,t ) <
(nC + njD + nrC + nD). Further, we introduce an indicator variable I to indicate the type and
source of the partially satisfied requisition. For i - j, (y let
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ic. if the partially satisfied requisition is of condemnation type
and is from source i

- iD. if the partially satisfied requisition is of depot repairable
type and is from source i.

Also, let EX again denote the number of units supplied to the partially satisfied requisition.
Then proceeding in the manner similar to that used in deriving Equations (8), (9) and (10), we
get

(24) Pr{U,() = dIRB, EX 0, (N(, 0. t2) - n ; ND(It1. (2) - n ,

fm(. D-,, (-_ D)

= ) , ' (d )

(25) PrU2W(t) = dIRB; EX e > 0; (N;'(t1 . t 2) - n;(, N;')0 1, 2) = n; .

i~j _ ) j =,d " - (d) for 8 o',C, a,-D

and

(26) Pr U 2 (t) - dIRB; EX- e > 0; (N;'(t1 . '2) = n;; N;(t,. t2)= nD . i= j, )

d

I8 = ( b,(k + e)40-,(l I I I(d - k) for8 = jC. jD
k>O

To compute Pr U 2 () = dIRB) we now need to obtain PrIEX - e, N:t (tj, t2) = n;C, N;D(t1.

t2)- n - j, o; I = 8 1RB). This will be done following the approach used in deriving
Equations (14-17), and using the results on sequences of Poisson arrivals (see Shanker [51).
The probabilitj of exactly n , n, nP requisitions out of n , In° ,, n,, respectively, being
satisfied Ili i, h lotal of (n;'.+ nD+ n,C+ n ,D) out of n)+ nD + n + n D ) is satisfied, is
given by

I c D 'iCl 'D~It, ' ID I In.. I I n" I
Ji i It" n, Ia

(27) PS- -) n j t n n nnfc + nD + nc+
n F+ n + n'c + nTJ

Let { Y1, Y2 . C) be the sequence of the number of units demanded from the depot

by the nf requisitions from source i. Similarly, let { Y1. Y2 .. ... Y ) be the sequence of the

number of units demanded from the depot by the nf? requisitions from source i(i- j. a).

Then
(28) PrlEX - e; (N;c(t,, t2) - n';c ND(tl, t2) -nD i - j, c"); 1- kCIRB), k - .

-Pr{(YI + Y2 + ... + Y11,) + (YI + Y2 + Y Y.D) + (Yj + Y2 + .- + y.)

+ (VY + Y2 +... + Y.D) Zo() +  Y + Y2 +... + YD) + (YI + Y2 +

"" D) - e', Y + > e; out of the first (njf+ n'f + n4f+ n3) requisitions at

the depot, (nf+ nj) are from source ; the next requisition is of condemna-
tion type and is from source k I(IY + Y2 + ... + Y') + (YV + Y2 +

N R+ Y) dLG (Y + Y2 + QR + Y V) +  OY + Y2 +  ... + Y dEC RB I
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= -PS 1 C  (z0(,)+k,-e)
D) (nC+ n ; D n ' n,1 o /

R, '(e + k2) • ' 'j (doc - z0(01) - - k2)J
k 2

D C O C R'(d

where

nD< n(>O). n'c< nk,()> 1); k - j, (r

0e- O...... (zo(t 1) + dD - (nf+ nP+ n'C+ nD))
and the ranges of k, and k2 are

max(n,0 + ncP, nF+ n,'c - zo(t) + el < k, < d0 - (nj+ n9 - n'-
14 k 2 4 min 1dc - z0(t,) - k nC+ nc - ntc- nAC), - e - (nc+ nc - n'!C- it,

Similarly the probability distribution when the partially satisfied requisition is depot repairable
type, is given by

(29) Pr{EX - e; (N;C(tI, t2) - n'C. N Ot 1 . t2) - n'D; i - j, o); I - kDIRB), k = j. o

InD_ 'D1
,, + Ij PiS

" (+D+ c + n ) (n[c+ n?+ n'c+ n;,)

I 0'0 (zo(t)+k, -e) ,0' (e+k 2) ' - i (d-kI-k 2 -e)I
k2

f.C+ffCffCftC) D~
• g' (k,) "-0c ' C ' ' (doc- zo(/i) - k, + e.), 0/ °%* (dg)* c ' (o)

where
nk < n(>,O), n' < n , 1); k - j, r; (Of - -0j)

e - 0, 1. (z 0(tj) + de - (nfc+ n'P+ ,'C+ ,.D)),

and the ranges of k, and k2 are

maxkP+ n, n.C+ n'c - zo(ti) + e) < k, 4 d c - zot) + e - (nj+ nc - n - n

142 < , dg - kI- e - (njD+ n D - n'j n

The probability distribution of Uj2 (t) can now be obtained from Equations (23-29). Let-

ting PSI - (nf + nj + n, + nD) (nf+ nw + nf + n ') and after simplifications we have

from Equations (22),
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s)+b

(30) Pr(U,(1) =s + b)8 = CP[s + b - dlXBR1 + X(T + R,,),,l
d> Ot ) d-O

nD nc nD n( n' n, n- n P I ,, -0 e,~ s ,c

+ (nD - 'I)) US (a, D) + (n- n )USQ, C) + (nfD- n.' US .D

* Pt.4 Ix 'o - r 0). epnIX D(-o- Ro)l Pn I ,(-o - R,)]

Pln Dl,\ (ro - Ro)]j

where

US(a', C) = 
O  '  (z O(t1 ) + k1 - e) " b D ) (kl) (  + k 2 )

US (0-, D) = 0 (zo(t 1) + k, - e) OD '( 1  49e+A

k, k2

dn.n( (n )• ¢-° (k,).0c" (d( - zo(,,) - k,- ,

'(k3) ' ,2 3

k3-0

• o(d- k 3 •4 " (dg - k - d + k3 )  f

US(a-, C) = ~(zo (f1) + k I e) OD k) 2

k

d (n LkCI b i a,(k3) - .oc (d -t C _z(tI) - k, k3 + e)

k3j-0

d ' ' dk 3) . OD (do - k) - k2 + e - d + k3 )

NVLEECL I Q T V 2 N. 4

us C (ko 0 -" ¥ ,."_.0(1) + k I e) OD k 31

0 kp k -, k.,)
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(d- k2 - k3) (d - k,- d + k2 + k9)J;

and

Id
US(j, D) 0  (zo(t 1) + k I- e) - 0  ' (k1) y t,(e + k2)ki[ 1 k2-O 2

(",,"- ,,.,o)- Z0o(t ) - k - k 3 + e)Ik3

4 . J- -(d -k 3) a (dg - k, - k2 + e -d + k2 + k3) III

The ranges of k, for enumeration in US(o-, C) and US(J, C) are as given in Equation (28),
and those in US(o-, D) and US(j, D) are given in Equation (29). The ranges k, in
US(oa, C) and US(o-, D) are also given in Equation (28) and (29), respectively. The ranges
of k3 in the US(j, C) and US(j, D) can similarly be obtained to ensure that k0"(0) = I and
0(") (n) = 0 for m < n. The ranges of n D n'c n"'and n'Care similarly taken to ensure that the
combinatorial terms in PS are nonnegative.

Since the expressions for Pr(U,(t) = s, + b}A and Pr{U,(t) = s, + b}B given by Equa-
tions (21) and (30), respectively, are independent of t, we obtain the stationary distribution lim

Pr(Bj(t) = b) = B*(b) by substituting these equations and Equation (1) in Equation (3).

5. STATICNARY DISTRIBUTION OF IN-REPAIR INVENTORY

As observed in Section 2, we note that the stationary distribution of the number of units
in repair at base j is given from the results of a MI I/R1/oo queueing system. As mentioned
by Sherbrooke [7], the distribution is a compound Poisson with parameter A,8R, and com-
pounding distribution Oj(.), [using Palm's theorem); that is,

k -A BR(BR P? k 0. 1,
(31) lim Pr(Qj(t) = k) = E 40)(k) e I(Xi R 0

n-0,' = 1, 2, J.

Similarly, the stationary distribution of the number of units at the depot is given by,
e- A°RO(,\oDRO)n

k eA 0(A
(32) lim Pr(Q 0 () - } = o k) R , kn= 0, I.

tfl-
0

O

6. STATIONARY DISTRIBUTION OF DEPOT
BACKORDERS/ON-HAND INVENTORY

As mentioned earlier, the depot can be treated as a single location which receives recover-
able and nonrecoverable types of demand generated by independent compound Poisson
processes fDg(), t > 0) and D'(). 1 > 0), respectively. Let X0(0) represent the depot
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inventory level at time t which consists of the units on-hand minus any backorders. The posi-
tive values of Xo(t) indicate on-hand inventory while the negative values indicate backorders
BO() at time r, that is,

BO) = max(O, - Xo0)).

It is more convenient here to obtain the stationary distribution in terms of XoWt) than for BO(t)
directly. Let Ex = (SO, So - 1, ... 1, 0, -1, -2, .. .1 denote the state space of X0(t).

Now, any thing on order from an external supplier at time t - 70 will have arrived by
time t, thus the number of units received via procurement during (t - ro, t] is the number of
units on order at time I- To. The number of units arriving from the repair shop during
(t- To, t] is the number of units- repaired during this interval, which equals Qo(- TO)
DD(t o, t) - Qo(). Therefore,

XoW = 00 - ro) + (units on order at time t - r"o) + units repaired during
(t - ro, t] - (total demand during (t - To, t)

= X0 (t - TO) + (units on order at time t - TO) + Q0 (t- TO) + De(-T o , f)

- Qo(t) - DD(t - To, t) - Dc(t - To , t)

= ZO(t - T O) - Qo(t) - Dc(t - , t).

Then for all i E Eo and j E Ex,

(33) Pr(X0 (t) =jZ 0 (0) =i

- Pr{Xo(t) =JZo(t - T0) = k, Zo(0) - i} IPr(Zo(t - TO) - k IZ(0) - i}
kEE

o

= EPr(Zo(t - ro) - Qo(t) - D (t - To, t) - j IZo(t - To) k, ZO(O) - i}
kEE o

* Pr(Zo(t - 7o) - k IZo(O) = i)

k I[-Pr(Qo()+DE(t-To, t)-k-jIQo(t-7o)- M;Zo0-To)-k;
k EE o Ira-0

ZO(O) - i}" Pr{Qo(t - TO) - m 1Z0 ( - T0 ) - k; Zo(O) - i}]

*Pr(Zo(t - 7) - k IZo(O) - i}.

It can be seen that Qo(t) and Zo(t) are independent for any t > 0 (see for proof reference
(51). Then upon simplification we get
(34) Pr{(XtW -j IZo(t - ro)"- k, Zo(O) - i} - Pr{(Dk 0 - To, ) + QoWt - k - iI Zo(O) - i} ;

- Pr{D (t - 7 0 , ) + Qo(t) - k - jIZO(O) - i}
- Pr(Qo(t) - k - j - dIZo(O) - i} • PrJD'(t - To, 1) - d).

d-O

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 4, DECEMBER 1981



TWO-ECHELON INVENTORY SYSTEM FOR RECOVERABLE ITEMS 599

Substituting Equation (34) into Equation (33) and after taking the limit as I - we get

X(j) lim PrXo(t) = jIZo(0) = i}

= E lim Pr{Q 0(t) - k -j - d1Z 0(0) = i}

lir Pr{D ( - ro. t) = d)j •r(k).

From Equation (32) then we have
(35) XJ(j) = - CPIk - i - dIAo9R 0 , OD • CP[d1X0ro, 4'1 •ro(k)

for =S 0 , So - 1... 1, 0, -1, -2,

or in terms of the backorders

(36) 80b CP[k + b - dIXIoRo, OD] .CP[dIXh0To. o] •- 0 (k)
kEE o d-O

for b = -So, -So + 0 .. 0, 1,

7. SPECIAL CASES

The results on stationary distributions for special cases of complete recovery (p, = 1,
j = 1. 2 ... J) and nonrecoverability (pi = 0, rj = 0; j = 1, 2 ... 1. J) can be derived from
the expressions obtained in Sections (4-6). For complete recovery when there are no condem-
nations and the system, as referred to by Sherbrooke, is 'conservative', no procurement is
made from the external supplier. The inventory position at the depot remains at a constant
level So(say): that is, ZO) = So for all t >0 0. Since Do (t) = 0 for all t >0 0, the Case (B)
discussed in Section 4.2 will not arise and consequently Equation (3) reduces to
Pr{U,(t) = sj + bi = Pr(Uj(r) - s, + b)A with zo(ti) = So. Upon substituting X0= - 0, and
zo-t) - So in Equation (21) we can obtain the stationary distribution B*(b). The stationary dis-
tributions of in-repair inventory are given by Equations (31) and (32). Equations (35) and
(36) similarly can be appropriately modified to yield stationary distribution of on-hand inven-
tory and backorders, respectively.

For the classical case of nonrecoverahility, that is, when the item is consumable, repair
loop is absent at each location in the system, and Q1U) = 0 for t > 0 and j = 0, 1 ... J. The
stationary distribution of Z0 (), t > 01 can be obtained by noting that inventory position at
the depot now changes at all arrival epochs of demands at the bases. (D0 (t). , > 0) is a corn-Jr

pound Poisson process with parameter X0 = X ?,, and compounding distribution

(' =- " A (')" Equation (I) can then be modified to give the stationary distribution
i-I

in this case by replacing ib(.) with 00(.). For determining B7(b), we note that the cases (A)
and (B) become do0U, t.) < -O() and do(t1, t3) > z0(t1), respectively. Equations (21) and
(30) can be modified to give B*(b). Similarly, X*(b) can be obtained from Equation (36) as
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(37) X0.(j) fi . CP[dIXo& , 4o'] .7ro(k)
AZEE d-OI

a result quite familiar in classical consumable item inventory systems.

The results for the case of unit demand, that is, (bj(l) = 1, ] = 1. 2. Jcan be simi-
larly derived by noting that 4om(n) = I for m = n and b"'(n) = 0 for m ;; n, and that D,(),
Dj8(t), DC(t), Df(t) are identical to N(,), N 8(t), Nf'(t), N1,(t), respectively are are simple
Poisson. Consequently, Do(t), D(), D (t), D°( ) are identical to No(t), N8(), N'(),
N (t), respectively, and are simple Poisson. The depot inventory position Zo(t) is then uni-
formly distributed over E0. Equations (21) and (30) can be modified easily to yield B*(b), and
it can be seen that the resulting expressions are the same as obtained by Simon [8]. For the
unit demand case, the cases of complete recovery and nonrecoverability can be dealt in a
manner similar to the one discussed above. For the case of complete recovery, the results are
the same as given by Sherbrooke [7] for unit demand at the bases.

The results for the special cases described above are obtained by suitable modifications of
the expressions derived in Sections (4-6). The details, however, can be found in references (51
and [8].

8. CONCLUSIONS

The exact expressions for stationary distributions of the depot inventory position, and of
the number of backorders, the on-hand inventory, and the in-repair inventory at each location
have been derived under the conditions of deterministic repair and lead times. From these
expressions we can determine long-run average to formulate objective function of the total
expected cost and can express the system performance measures such as service rate, ready rate
etc. for the purpose of system optimization. The expressions obviously are computationally
complex as they involve calculations of several combinatorial expressions and convolutions.

The results can also be used to assess the degree to which some approximate but compu-
tationally simpler models can serve as an approximation to our exact results. For example, for
a unit demand case in a two-echelon conservative system, a study (reference 161) on compari-
son of the exact results with those given by Sherbrooke's METRIC model which is approximate
but much simpler to use, reveals that a considerable discrepancy exists between the two results
especially when the depot spare stock level is low or when a major portion of the repairs is car-
ried out at the depot. For the problem of optimal allocation of units of a spare item, it has
been concluded in reference [61 that the METRIC model will suggest larger stocks at the bases
with poor repair capability, than given by our exact results. Similar comparisons can be made
for the problem of allocation of units in a multi-item system.

The results of the present analysis also apply to the situation where the three types of sys-
tem demands (base-repairable, depot-repairable, condemnable) at the bases arrive indepen-
dently in a Poisson manner from different sources.
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ON A SHAPE ESTIMATOR OF WEISS
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ABSTRACT

The problem of estimating the shape-parameter of a distribution is con-
sidered. We introduce a class of estimators the distributions of which are in-
dependent of location and scale. An estimator proposed by Weiss (I1 is a
member of this class. We find the asymptotically most efficient estimator in
this class which differs from that proposed by Weiss.

1. INTRODUCTION

Let X.: < X.:2 < ... X.:. be the order statistics from a sample of size n from a distri-
bution function F with density f(x). We assume that

1.) f(x)- 0 for x < 0

f(x)- c(x-O)"-'(1 + r(x-9)) for x > 0,

where c, 0, y, r(y) are all unknown except that we know c > 0, -Y > 0 and Ir(y){ I< K? for
all y in some interval 10, A), where K, 8, A > 0, again unknown. Suppose we want to esti-
mate y on the basis of X.:e ..... X,:k(,), where k(n) - oo as n - 00 and k(n)/n - 0. Weiss
I1] suggests the following simple estimator for the shape-parameter 8 = 'y-

(1.2) A - log Xn:k(n) - XR:I /log 2.Xn:i,(n)/21 - X.nA

which is consistent for 8 but is neither asymptotically efficient, nor is it optimal in any ordinary
sense. The purpose of this note is to suggest a similar estimator which is more efficient and is
optimal in some sense.

2. THE OPTIMAL ESTIMATOR

It is shown in Weiss [1) that under (1.1), for all asymptotic probability calculations, we
can assume that

(2.1) X,, - 0 + {(Z, + ... + Z)/8cn1),
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604 I. WEISSMAN

where Z1, Z 2 .... are independent and exponentially distributed random variables with mean
1, i - 1.2. k(n), lir k(n)= , lir k(n)/n " 0 for all e > 0. Let m(n) be an

integer, m(n) < k(n) and define

X":k(n) - Xn:l1 k (n)J~ni~n) -,,log/log .
o n:m(n) - X e1 m(n)

Using the representation (2.1) and the law of large numbers, for every sequence m(n) for
which

(2.2) lim m(n) == and lim (kn) - m(n)) - jc
n-o n-oo

the estimator 8 (,) is consistent for 8. Clearly 8 in (1.2) is a special case of i,(n) with
m(n) = [k(n)/21. Although this choice of m(n) is intuitively appealing, it is not a very good
one. Suppose that

(2.3) Jim m(n) (0< P <
n- k(n)

Then, it is not hard to show that the asymptotic variance of 8 mn() is given by

(2.4) lir k(n) Var 8m(,) - 82(1 - p),'(p Iog 2 p) 8 2 V(p).
n--o

The function V(p) has a J shape on (0, 1) and attains its minimum at Po = .2032. Hence, in
the sense of minimum variance, the optimal choice of m(n) will be m(n) =

[pok(n)] == k(n)/5.

Finally, the results hold under milder conditions than considered by Weiss 11]. Namely,
it is enough to assume that F is regularly varying at 0:

lim F(O + ty) = P for all t > 0.
Y1o F(O + y)

3. CONCLUDING REMARKS

The shape-parameter 8 - I/-/ is a scale parameter for 8 m(n), whose distribution does not
depend on 0 or c. Thus, 8lpok()n is optimal (among all 8 lpk(nfl, 0 < p < 1) uniformly in 0, c

and 8. The optimality is preserved if we use 11/8 pkn()l to estimate y. The asymptotic relative
efficiency (ARE) of 8[a,nul with respect to 81pok(n01 is at least 90% in the interval p E [1,. 351
and only 74.2% for p - .5 (see Table 1).

REFERENCE

(11 Weiss, L., "Asymptotic Inference about a Density Function at and End of Its Range,"
Naval Research Logistics Quarterly, 18, 111-114 (1971).
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TABLE 1 - The asymptotic relative
efficientcy Of ' I~ (. I With respect

to08 [pok (n) I (in percents)

p ARE Ip ARE

0 0 .20 100.0
.01 33.1 .30 95.9
.02 48.2 .40 86.4
.03 58.7 .50 74.2
.04 66.7 .60 60.4
.05 72.9 .70 45.8
.06 78.0 .80 30.8
.07 82.2 .90 15.4
.08 85.7 .95 7.7
.09 88.5 .99 1.5

-. 10 91.5 11.00 0
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A BRANCH-AND-BOUND ALGORITHM FOR
SOLVING FIXED CHARGE PROBLEMS
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ABSTRACT

Numerous procedures have been suggested for solving fixed charge prob-
lems. Among these are branch-and-bound methods, cutting plane methods,
and vertex ranking methods. In all of these previous approaches, the pro-
cedure depends heavily on the continuous costs to terminate the search for the
optimal solution. In this paper, we present a new branch-and-bound algorithm
that calculates bounds separately on the sum of fixed costs and on the continu-
ous objective value. Computational experience is shown for various standard
test problems as well as for randomly generated problems. These test results
are compared to previous procedures as well as to a mixed integer code. These
comparisons appear promising.

1. INTRODUCTION

One class of mathematical programming problems that has been of continuing interest to
researchers is the linear fixed charge problem (LFCP). The LFCP is similar in structure to a
minimization linear programming problem except that a fixed or lump charge must be paid if
the associated continuous variable is positive. It is this discontinuity that has made the LFCP
difficult to solve.

The LFCP may be formulated as follows:

(P) maximize CTx + FTy

subject to x E S

(1 ifx1 > 0
and YJ - if xJ , 0

where S- (xIAx- b, x > 0).

If n' is the number of structural variables and I is the number of slack and/or surplus variables,
then n- n'+ is the number of x variables. Then A is m x n, Cis n x 1 Fis n x I and
nonnegative. Both C and F have the last I components equal to zero. Finally, b is a nonnega-
tive m x 1 vector. The ci's are the continuous or "unit" costs and the fj's are the fixed costs.
Also, let N - (1, n) and M - (1. .
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608 P. G. MCKEOWN

Previous work on this problem has centered about either the LFCP with a general con-
straint matrix or the fixed charge transportation problem (FCTP) (e.g. [51). The latter has the
special form of the Hitchcock transportation problem. In all cases, work has sought to exploit
the result first shown by Hirsch and Dantzig [4] that the optimal solution to any fixed charge
problem (if it exists) will occur at an extreme point of the constraint set. It is not as easy as it
may seem to find a global minimum since it has also been recognized that many basic solutions
are local minima [7].

Work on the general version LFCP has taken three different directions. Steinberg [11]
used a search procedure to solve problems with as many as 30 variables and 15 constraints
while Taha 1131 used an adjacent vertex cutting plane procedure to solve problems of size
15 x 20. Finally, McKeown [81 used a vertex ranking approach first suggested by Murty 19] to
solve both general and transportation fixed charge problems. He solved general problems with
as many as 20 structural variables.

Our approach to the problem will be to use a branch-and-bound procedure to solve the
LFCP. We will discuss this algorithm in Section 2 and present a numerical example in Section
3. Finally, we present and discuss computational results in the last section.

2. THE BRANCH-AND-BOUND ALGORITHM

Our branch-and-bound algorithm is a straightforward application of the procedure
described by Geoffrion and Marsten [3]. They suggest that difficult problems such as (P) can
be solved by a systematic process made up of separation, relaxation, and fathoming. The
separation generates candidate problems (CPs) whiLh are added to a candidate list (CL). A
(CP) is removed from the (CL) and an attempt is made to find a bound on its optimal solution.
Usually, a relaxation of the (CP) is solved to calculate this bound. If the bound is worse than
the value of a feasible solution or if the (CP) is infeasible, it is possible to eliminate the (CP).
If it cannot be eliminated, the (CP) is then separated also. If the (CP) is discarded, it is said to
be fathomed. This procedure continues until the (CL) is empty. At any point in the procedure,
the best feasible solution found to date is known as the incumbent.

The unique part of our branch-and-bound algorithm is based upon the following proposi-
tions:

PROPOSITION 1: Consider Problem (P,) below (the continuous portion of (P)):

(P,) minimize Crx

subject to x E S

Then, if (x, y*) solves problem (P) and i solves problem (P,), then CTf < Crx*.

PROOF: Trivial from the theory of linear programming.

PROPOSITION 2: Consider problem (P8 ) below

(P8) minimize .4 fY
jEN
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subject to F 8,,.v_, > 1', i E A,
./ EN

yJ >, 0, j E N

where 8, 1 ifa, > 0 in A and F,- otherwise i E M.

Then if (x*, y*) solves problem (P) and . solves problem P8. then Frjg < FTy*.

PROOF: See [8]. These two propositions give rise to the following result which defines
the relaxation of problem (P):

PROPOSITION 3: If %(P,.) = Ci. v(P,) = FTC, and v(P) = CTx * + FTy*, then

v(P,) + v(P8) <v(P).

PROOF: Follows from previous results.

Separation occurs by selecting a variable .v, which is basic and nondegenerate in (P,) and
which has not been previously used for separation, and alternately setting the corresponding v,
value to 0 and 1. This avoids problems with infeasibility since we know that any solution to
(P,) is also a solution to (P). We also avoid degeneracy considerations by this seiection of
variables.

It is not necessary to solve (P,.) and (Ps) from scratch at each new separation. This may
be avoided by using the optimal tableau for each of these problems corresponding to the (CP)
being separated. If y, is set to be 0, this implies that x, equals 0 also. The new tableaus for
this branch for (P,) and (P8) can be found by using the dual simplex algorithm to drive v, and
xj, respectively, out of the optimal basis for each problem. If, in either case, no feasible solu-
tion exists with x, = 0 and y, = 0, then the branch is terminated. Otherwise v(P,) and v(P8)
are equal to the optimal solution values of the respective problems. Obviously, if.v, is not basic
in (P8) for the (CP), then v(P 8) does not change.

On the other hand, if yj is set to I then x, is already basic and positive by our selection of
separation variables so no action is necessary on (P,.). Hence, the optimal tableau for the (CP)
is also optimal for the new problem formed by the separation. In the case of (P8), we can com-
pute the optimal solution for this branch by noting that (Ps) is in actuality a relaxation of a set
covering problem. We can then determine the effect of setting v, = I by seeing that the new
set to be covered is equal to I - 8,) for i E M. We are then interested in solving the following
modified version of (P8) which we will term problem (Pl):

(P18 ) minimize I fjyj
jEJ2

subject to S8yy > f', - 7 8,, E M,
JE1 2  1 EJ,

y,>,O j EJ 2,
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where J 0  
{jly = 0)

J, = Ujly, = IlI

and J 2 = N -{J 1 UJo}.

It is liot necessary to solve_(P18) anew at each separation of a (CP). If, for the (CP). B
is the optimal basis for (P1), F is the right-hand-side, and A, is the Aih column of the con-
straint matrix, i.e. 18'J. i E M), for the separation variable, then
b-I (F - 1)= B F - B A is the new right-hand-side for (P18) foi the v, = I branch.
This allows us to compute a new right-hand-side for (P16) at this branch by subtracting the jth
transformed column from the right-hand-side corresponding to the (CP) being separated. If
the new right-hand-side is feasible (>0), then the present basis (B6 ) is optimal. If this is not
true, then the dual simplex method can be used to attempt to achieve a feasible solution. If no
basic feasible solution exists for die new right-hand-side, this branch can be terminated.

If Zs is the optimal solution value to (P I) as found above, then v(P8) = Z, + f .
JEJi

Also, if Z is the value of an incumbent solution and for any branch, v(P 8 ) + v(P,) > Z, the
branch can be terminated.

This process begins by solving the original versions of (P8) and (P,) to determine initial
optimal tableaus. These tableaus are then used to generate successive tableaus as described ear-
lier. Rather than storing the entire tableau for each (CP) in the (CL), the index sets of the
basic variables for (P,) and (P8), which we denote as B, and B6 , are stored as binary words.
When the (CP) is removed, a "crashing" routine is used to compute the desired tableaus for
(Pc) and (Pb) corresponding to the index sets. By crashing, we mean forcing the variables in
the index set into the current basis without regard to intermediate feasibility. The fact that the
current and desired tableaus are both feasible insures that the desired tableau will be achieved.

A Linear Programming Lower Bound

Problem (P) may also be formulated as a mixed integer programming problem as follows:

(PAl) minimize Z - CTx + FTy

subject to x E S
ui yj- XJ > 0 j E N

yj E(0, 1) jEN

where u, > xj for j E N.

For fixed charge transportation problems with supplies (S,) and demands {D,}, then
Aj - min IS, D,). Or, if the A matrix is nonnegative, the u. values can be found by

uj max
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However, if the A matrix does not satisfy either of the above criteria, then we must compute
the uj values by other means. To do this let Z be the the value of an incumbent solution.
Then we can require that v(P,) + v(P 8) < 2. We can use this result to compute upper bounds
on the x, using the following linear programming problem:

(Pu) maximize xi

subject to x E S

Crx < Z - v(P 8 ).

For each xj, uj = v(Pu).

If we relax the integer restriction on the yj variables to 0 < yj < 1 in PMI, we have a
linear programming relaxation which yields an optimal solution value Z1. Obviously, Z, < 2,
so we could use this as a lower bound in a branch-and-bound procedure. This bounding pro-
cedure will be compared in a later section to v(P,) + v(Pg).

3. EXAMPLE

As an illustration of our branch-and-bound solution procedure for the linear fixed charge
problem, consider the following problem:

minimum 4x, + 2x2 + 3x 3 + 24y, + 12Y2 + 16Y 3

subject to x, + 3x2  '>15

x1 + 2x 3  >10

2x, + x2  >20
lifx j j=l1, 2, 3

yj I iif x > 0 123
= if xj = 0

xj> 0, j l . 3.

For this problem P8 is as follows:
minimum 24y, + 12Y2 + 16y 3

subject to Y1 +Y2

Yl + Y3 1

Y) +Y2 >1

yj >0, j=1, 2, 3.

Solving P, and P5 we get basic variable index sets B - {1, 2, 31 and B8 - 111,
v(P,) - Z - 41.5, v(P8) - Zg - 24. We can also compute a feasible solution to P using B, to
obtain a Z* - 93.5. We now branch on this solution to P, by setting Y, - 0 and x, - 0. This
yields a Z, - 55 and Z8 - 28 for a lower bound of 83 which in this case also equals a new Z
value at this solution (node 2 in diagram).

We now set y, - I and compute Z, - 41.5, Z- 0, ZLB - 41.5 + 0 + 24 - 65.5,
B, - (1, 2, 31, B8 - (9), J0 - 0, J, - (1), and J2 - (2, 31. We now branch on this last node
by setting Y2 - 0 and Y2 - 1. The zero node is terminated since Z, - 60, Z - 0 and
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ZLB = 60 + 24 = 84 > 83. The one node yields a Z= 41.5, Z8 = 0, and
ZLB - 41.5 + 24 + 12 - 77.5. For this last node (5 on the diagram), B, - {1, 2, 3),
B8 = (4, 6), J0 = 0, J, - (1, 2), and J2 - 13).

If we then branch on node 5 by setting Y3 = 1, we determine a ZLB = 93.5 which is
geater than 83 so we terminate this branch. However, branching on Y3 = 0 yields a new
Z= 79 1/3. Z = 43 1/3, Zs 0 and ZLB = 43 1/3 + 24 + 12 = 79 1/3. Since the lower
bound equals Z*, we may also terminate this node with the present incumbent solution, i.e.,

= 79 1/3 and B, = (1, 2. 6), being optimal.

At the root node, the optimal solution to the LP relaxation of (PMI) is found by comput-
ing uj = 15, 20, 5 for j - 1, 2, 3. The value of Z, using these upper bounds for this problem
is 58.7 as compared to the lower bound computed above of 65.5 v(P c) + v(Pt).

g ' ~~ ~ Z 41.5 7f4 =_Z= 24 c-6,Z=

I z = 93.5, ZLB = 65.5

--431/, = 0

3 Z 41.5, 4 -0 2 ,= 55, Z=-28

5 Z 4=41.5, Zf=-0 4 Z,= 60, 760
ZLB = 7.5 T ZLB = 84

7 Z- 41,,46= 0 ZI 4=43 1/3, 4= 0
ZLB-- 93.5 @ L= Z = 79 1/3

T T

4. COMPUTATIONAL RESULTS

The branch-and-bound algorithm discussed previously was programmed in FORTRAN for
testing on a CDC CYBER 70/74 computer. In coding the algorithm, standard FORTRAN was
used with the exception of bit manipulation extensions, i.e., storage of all pertinent variable
lists was done using bit manipulation of the CYBER 60 bit words.
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To determine a good starting candidate for optimality, Phase I of Walker's 115J heuristic
was used after the solution of the continuous portion of the linear fixed charge problem. This
has been shown to give very good approximate results. The procedure for selecting a node to
remove from the partial solution list to branch on was very simple in that we always chose the
last node on the list. Similarly, we used a simple approach to select a variable to use in branch-
ing. The branching procedure always chose the first free variable in the basis for the continu-
ous problem to branch upon by first setting the corresponding integer variable to zero and then
setting it to one. From this discussion, it is clear we have not attempted to "optimize" our algo-
rithm.

To test this code, various types of test problems were solved. The first class of problems
were general fixed charge problems with all equality constraints. These problems were origi-
nally generated by Cooper and Drebes (I1I and have been used by various authors as benchmark
problems. These test problems are of size 5 x 10 with the following characteristics:

(ii) I b, (999

(iii) 1I c) 5 2 0

(iv) 1 f, 999

and are 50%/ dense. To test larger problems, these 5 x 10 problems were combined by placing
them on the diagonal to generate 10 x 20 and IS x 30 problems. The results of solving these
problems with our code are shown in Table I.

TABLE 1 - Computational Results With
Standard Test Problems

Number of Ave rage
Algorithm Machine m X n Problems Solution

______________Time

Branch-and-Bound CYBER 70/74 S X 10 12 .114
10 x 20 6 1.866
15 x 30 4 15.189

Steinberg's Search IBM 7072 5 X 10 15 9.600
15 x 30 10 1266.0

Vertex Ranking UNIVAC I1l08 5 x 10 9 .496
10 x 20 5 37.704
15 x30 I

Walker CDC 1604 5 X 10 52 (52) 4.
_____________15 x30 1 5 (5) 18.

*Storage overflow
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As noted above, these problems have been used as test problems by various previous
researchers. For that reason, we have attempted to supply comparative computational results.
Previous results shown in Table 1 are those of Steinberg's testing of his search procedure on
the IBM 7072 and McKeown's testing of the vertex ranking procedure on the UNIVAC 1108.
In each case we have shown the CPU seconds to find and prove an optimal solution. In the
case of our branch-and-bound code, these times are based on using the FTN compiler with
OPT - 2 on a CYBER 70/74. We have also shown results published by Walker for his com-
plete heuristic procedure. For that algorithm, the value in parentheses refers to the number of
problems tested that were optimal.

In addition to the benchmark problems we have compared our branch-and-bound code for
fixed charge problems (FCBB) to a state-of-the-art mixed-integer code based on Beale and
Tomlin (141 work as implemented by Sinha 1121 which we will denote as SMIP. To use SMIP,
upper bounds on each variable must be found. These were found by solving P, for each vari-
able. This was done in FCBB using the heuristically derived value of Z ° and the linear pro-
gramming solution value of P8, i.e., v(Pr), at the root node. Since the constraint set remains
the same for each variable, it was not necessary to solve each version of P,, from scratch.
Instead, the optimal basis for the first variable problem was used as a starting point for the
second variable problem, and so on until all upper bounds were computed.

The problems solved were the same as the Cooper-Drebes problems with the exception
that problems of various sizes were generated. The results of this testing are shown in Table 2.
For each set of five problems, we have shown the average time and range of times (CPU
seconds) for FCBB and SMIP. We have also shown these same values for the FCBB without
the Walker heuristic and for SMIP without including the times necessary to calculate the upper
bounds. The former calculations were made to determine the effect on FCBB of not using a
heuristic since none was used in SMIP. Similarly, the latter calculations were made to compare
FCBB and SMIP under the assumption that upper bounds were known for each variable and did
not need to be calculated.

Looking at Table 2, we note that for Problem Sets 1-5, FCBB is significantly faster than
SMIP for 5 x 10 problems and this disparity increases as the number of variables increases
until FCBB is faster by more than a factor of 20 for 5 x 50 problems. The same general trend
exists when FCBB is compared to SMIP without the upper bound calculations but as would be
expected the SMIP times are slightly faster. For problem sets 6-9, the relative efficiency of
FCBB compared to SMIP is not as dramatic but FCBB remains at least twice as fast as SMIP.
Also, SMIP exceeded storage limitations for the largest problems.

Two other results may also be noted from Table 2. First, for problem sets 1-5, increasing
the number of variables has some effect on sol'tion times for FCBB but not as much as would
be expected. However, there is a much more dramatic effect of increasing the number of vari-
ables for problem sets 6-9. The second result is that removing the Walker Heuristic has very
little effect on the solution times except for the 5 x 30 problems. This indicates that the algo-
rithm is finding a good incumbent value early in the branching process.

One of the reasons for the relative efficiency of FCBB to SMIP is that while the LP relax-
ation has m + n constraints, Since both procedures use pivoting to calculate bounds, the larger
number of constraints slows the LP relaxation.
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TABLE 2 - Comparison of Algorithms (all > constraints)

FCBB SMIP FCBB (without SMIP (minus
Problem Set Size Time Time heuristic) BoundTime Calculation Time)

Ave. Range Ave. Range Ave. Range Ave. Range
1 5 x 10 .070 .023- .202 .130 .068 .022- .136 .086-

.219 .389 .531 2.482

2 5 x 20 .151 .043- 1.018 .444- .158 .045- .815 .296-
.500 2.805 .531 2.482

3 5 x 30 .222 .087 1.896 .785- .320 .103- 1.523 .613-
.610 3.255 1.048 2.813

4 5 x 40 .349 .136- 5.028 2.593- .394 .239- 4.375 2.036-
.549 8.678 .582 8.038

5 5 x 50 .323 .172- 7.055 4.492- .362 .166- 6.088 3.656-
.668 13.383 .661 12.388

10 x 20 .424 .365- 1.993 1.082- .487 .210- 1.295 .541-
.626 3.087 .817 2.135

7 10 x 30 2.554 1.086- 6.416 3.499- - - 4.697 2.219-
4.373 10.818 9.041

8 10 x 40 7.273 2.111- 15.727 10.079 - - 12.767 7.383-
20.001 25.011 21.632

9 10x 45 11.822 1.793- + + - - + +
33.986

+ Exceeded storage limitations.

The final result of interest in Table 2 is the wide range of times for each problem set.
This is similar to results reported by Ross and Soland [101 for Special Transportation Problems
and by Fisk and McKeown [21 for Pure Fixed Charge Transportation Problems. It is unclear in
any of these contexts as to what makes a problem "easy" or "difficult" to solve.

Table 3 gives results of using FCBB to solve six versions of problem set 3. Three charac-
teristics were varied to determine their effect on solution times. These characteristics were
density, constraint type, and relative size of fixed and continuous costs. With the exception of
these three charateristics, the problems in Table 3 are the same as Problem Set 3 in Table 2,
i.e., five problems in each set with each problem being 5 x 30 and being randomly generated
using the same parameters as the Cooper-Dreber problems. In each case, the original results
for Problem Set 3 are used as a bench mark. To summarize, Table 3 shows that problems with
equality constraints are more difficult to solve than problems with greater-than-or-equality con-
straints but problems that are 90% dense are easier to solve than problems that are 50% dense.
Finally, the greater the continuous costs relative to the fixed costs, the easier the problems are
to solve.

The first two results have not been reported before while the last is similar to that shown
by Kennington [61 for Fixed Charge Transportation Problems. The first result is thought to be
caused by the low value of P8 as compared to the sum of fixed charges in the optimal solution
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TABLE 3 - Eflect of Parameter Variation

Problem Set Size Density C, F Constraint FCBBa  Time'
Range Range Type Ave. Time Range

10 5 x 30 50% 1-20 0-999 GT 100 39.18-274.77

11 5 x 30 50% 1-20 0-999 EQ 402.25 100.00-819.36

12 5 x 30 90% 1-20 0-999 GT 78.82 64.86-91.89

13 5 x 30 50% 0-0 0-999 GT 276.57 80.63-561.26

14 5 x 30 50% 1-99 0-999 GT 79.81 38.28-102.70

15 5 x 30 50% 1-20 0-20 GT 38.28 32.88-47.74

aAll times as a percent of Average Time for Problem Set 10 [Same as Set 31.

to P. On the other hand, higher density values will lead to higher values of P6 relative to the
sum of fixed charges in the optimal solution. Finally, higher continuous costs lead to a better
overall bound since v(Pc) tends to dominate the overall cost structure and the solution to PC
comes closer to matching the optimal solution to P. However, FCBB was able to solve prob-
lems with the continuous costs equal to zero in a reasonable length of time. This is the first
time problems of this type have been attempted and successfully solved. For problems of this
type, the P8 bound alone appears to be adequate.

In Table 4, we have compared the lower bounds found by FCBB and by using the optimal
solution to the linear programming relaxation (PMt). We used six problems previously solved
as portions of Problem Sets 3 and 8. For each problem, we have shown the time to compute
the bound, the lower bounds as a percentage of the optimal solution (V(P)) and the solution
time. The results from these six problems do not show any clear trends. The lower bounds
tend to favor the FCBB algorithm as do the solution times but the lower bound for Problem 3c
is better using the LP relaxation. The only general result that can be derived from the table is
that the quality of the bound does not in itself guarantee a faster solution time for a given prob-
lem.

TABLE 4 - Comparison of Bounds

FCBBa  FCBBb FCBBC LP" LPb LPc
Problem Size Bound Bound Solution Bound Bound Solution

Time Time Time Time

3a 5 x 30 38.59 77.98 5.64 39.86 72.65 100

3b 5 x 30 63.95 85.31 11.05 79.30 71.99 100

3c 5 x 30 58.09 71.01 11.69 81.41 77.09 100

8a 10 x 30 12.82 54.29 14.28 23.64 29.26 100

8b 10 x 30 9.92 60.85 40.95 49.95 53.84 100

8c 10 x 30 5.25 35.47 52.81 41.59 45.21 100
8AlI limes as a percent of time to find the optimal solution for that algorithm. For the LP bound.
the times include the time to compute upper bounds on the variables.
bAll bounds as a percent of optimal value (v(P)).

CAll solution times as a percen' of time using LP relaxation (SMIP) to find optimal solution.
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5. CONCLUSIONS

We have presented here a branch-and-bound procedure for solving linear fixed charge
problems that uses a new approach to bounding on the fixed charges as well as on the continu-
ous costs while not requiring a knowledge of upper bounds on the continuous variables. Com-
putational results for this procedure have been presented which appear to be significantly better
than previous algorithms or state-of-the-art mixed integer codes.

Future research in this area would include testing of various selection rules and branching
schemes in order to optimize the algorithm, use of mass storage files to store bases for partial
solutions and testing to determine what makes a problem "easy" or "difficult" to solve. This
procedure could also be specialized for fixed charge transportation problems by using network
dual pivoting procedures for calculating bounds.
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ABSTRACT

This paper discusses the properties of the inventory and advertising policy
minimizing the expected discounted cost over a finite horizon in a dynamic
nonstationary inventory model with random demand which is influenced by the
level of promotion or goodwill. Attention is focused on the relation between
the fluctuations over time of the optimal policies and the variations over time
of the factors involved, i.e., demand distributions and various costs. The op-
timal policies are proved to be monotone in the various factors. Also, three
types of fluctuations over time of the optimal policies are discussed according to
which factor varies over time. For example, if over a finite interval, the ran-
dom demand increases (stochastically) from one period to the next, reaches a
maximum and then decreases, then the optimal inventory level will do the
same. Also the period of maximum of demand never precedes that of max-
imum inventory. The optimal advertising behaves in the opposite way and its
minimum will occur at the same time as the maximum of the inventory. The
model has a linear inventory ordering cost and instantaneous delivery of
stocks-, many results, however, are extended to models with a convex ordering
cost or a delivery time lag.

1. INTRODUCTION

This paper focuses on the problem faced by the manager of a store with important inven-
tory costs and an advertising budget in the presence of fluctuations in economic conditions. In
particular, qualitative results are provided linking fluctuations in economic conditions (demand.
holding costs, advertising costs) to fluctuations in jointly managed optimal inventory orderings
and advertising levels. Under the usual convexity assumptions, knowledge of the fluctuations
of the demand over time is sufficient to determine those of the optimal policy without comput-
ing them explicitly.

Very few authors have attempted to optimally integrate inventory policy with advertising
policy. In fact, the only reference we know of is Miercourt 18). He established the existence
and the characterization of the optimal policy, though he did not attempt to discuss their
fluctuations over time. The general approach to the fluctuation problem is along the lines of
Karlin's work (51 and its extensions by Veinott (191, (221. Karlin established the relationship
over time of the optimal inventory policy with the fluctuations of the demand for a discrete
time dynamic inventory model involving a single commodity with random demand. Veinolt

VOL. 28, NO. 4, DECEMBER 1981 619 NAVAL RESEARCH LOGISTICS QUARTERLY

k-kZ=CJWi P"3 SLAhK-NO 1M



620 Y. BALCER

extended these results in various ways emphasizing refinements that are possible with transla-
tions of the demand distributions. He also showed that the proper concept linking the varia-

tions of the optimal policy over time with the fluctuations of the demand and other parameters
is the myopic policy. A proper interpretation of scine of our results extends the work of Pier-
skalla 1101 relating optimal inventory policy with monotone obsolescence probabilities. The
work of Topkis and Veinott [181, Topkis [171 and Veinott 1261 on subadditive functions on
sublattices and its application to inventory problems by Veinott [25], provides us with the
proper tools and methods for our analysis. A knowledge of their theory, at least to the extent
of the Appendix of Balcer [31, is essential to understand this paper. Results from this Appen-
dix are referred to by the letter A followed by a number, such as Theorem A2, Lemma Al
Example A5. Results established in this paper are referred to by numbers, such as Theorem 6
or Lemma 5.

An abundant literature (see Balcer (21) covers the problem of optimizing advertisement
expenditures given a known demand-advertising relationship and no inventories. Most of them
generalize the model of Arrow and Nerlove [11, which introduces the concept of goodwill
increased by advertising and decaying exponentially. In that literature, the work of Kuehn [71
stands out because of the resemblance of some of his results with ours. His model is not
clearly defined and is said to be inspired by a previous model of his [61 which was dynamic with
random demand (the randomness was introduced by a Markov process via brand switching).
He concluded that the advertising expenditure fluctuates over time in unison with sales and
with peaks and bottoms of advertising expenditure preceding those of sales.

As mentioned earlier, our main focus is to link these fluctuations with variations in pri-
mary factors such as demand, ordering cost, holding and shortage costs, promotion effect, etc.
In Section 2, we set up an inventory model with advertisement. For this model some relevant
results from Balcer [3) regarding the existence and the characterization of the optimal policy are
reproduced.

In Sections 3 and 4 we establish that the optimal solutions in a given period are monotone
in the various costs of that period or future ones. In Section 5 we exhibit the relationship
between optimal inventory policies which take into account all present and future costs, -1d
myopic inventory policies which take into account only present costs. In Sections 6 and 7 tt.
fluctuations in the optimal inventory and advertising policies are linked to the fluctuations in
the myopic policies which, in turn, vary with changes in the parameters of the problem such as
the various costs and the demand. The problem of inventory with varying obsolescence proba-
bilities treated previously by Pierskalla is discussed. Finally, in Section 8, the results of the pre-
vious sections are extended to models with convex inventory ordering costs or with lag in
delivery of the ordered inventory. Sections 5, 6, and 7 are more closely related to Karlin's
work and Sections 3, 4, 5 and 8 to Veinott's.

2. MODEL

In this paper we will study a discrete time dynamic model of single commodity manage-
ment, when the nonnegative demand for the commodity in each period is uncertain but has a
known distribution depending on the existing level of goodwill. At the beginning of each
period, the manager knows the initial inventory x, the present and future demand distributions
and the cost structure. He dcides to increase instantaneously the initial inventory x to a start-
ing level y > x by ordering at a unit cost c, and goodwill to a starting level b > 0 by advertis-
inS at unit cost p. The demand g(b) + U is the sum of a nonnegative random variable U and a
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FLUCTUATIONS OF OPTIMAL INVENTORY POLICY 621

nondecreasing function of goodwill such that g(O) = 0. During this period, the demand
g(b) + U occurs, so the terminal inventory becomes y - g(b) - U. The initial inventory in
the next period is q(_v - g(b) - U) where 'q(z) = nz + 

- i7 z - with '9, > -q- > 0,
z + = max(z,O) and z = max(-zO). When the slope ofi- is between zero and one, (I -,q+)
is interpreted as a depletion or loss of inventory and (I - -q.) as a loss of sales arising from
impatient consumers who depart before receiving their orders. The initial level of advertising
in the next period is 0 since the effect of advertising is ephemeral.

During each period, the manager incurs a capacity cost, h, on the starting inventory, and a
shortage-holding cost, s, on the terminal inventory. Both of these cost functions are convex,
and the function s increases to infinity with its argument. Moreover, s is nondecreasing in z on
the nonnegative real line. The function h is bounded below. There is a unit selling price r.
The current sale price is paid when each consumer demand is incurred. This yields a gross
revenue of r(g(b) + U) to the manager. If the inventory is positive, the consumer receives
the commodity without delay until either the demand is totally satisfied or the inventory is
completely exhausted, whichever comes first. If consumers subsequently depart or increase
their orders without being served, the manager refunds or pockets, respectively, the then
current sale price. The sale is final only when the consumers receive the commodity they have
purchased. We assume that EU and Es(y - g(b) - U) are finite, where E denotes the expec-
tation and that the demand function g(b) is increasing and concave in the goodwill. This last
assumption has been verified empirically by Shryer [II] and Stone [14] for mail ordering,
Telser [151 for cigarettes, Palda [91 for drugs, Clement et al. 141 for milk and Simon 1121, [131
for liquor.

Given a finite horizon N, let '(x) be the minimum expected discounted cost in the
periods n .... N, where x and 0 are respectively the initial inventory and goodwill in period n.
The function e" can be calculated for each period by the dynamic programming recursion

(1) C(x)- min c(y- x) + pb + h(y) + Es(y- g(b)- U)
v >x.b >O

- r(g(b) + U) + (1 - 7u_)rE(y - g(b) - U)

+X EC"+' In(y - g(b) - U)1).

for n = 1. N, where e.N+l(x) - cx. Every symbol in (1) should be indexed by n;
however, when no confusion is possible because of the context, the index n is suppressed
throughout this paper.

It is convenient first to transform the problem to one with no ordering costs, a technique
which has been used by Veinott (201. This is achieved by letting C"(x)= ((x) + cx.
Second, the problem is not convex in (y, b), but it is in (y,/3) where 1 - g(b), the impact of
advertising on sales. Because g(b) is increasing in b, the optimal policy in the (v. 1 )-space can
be expressed in the original (y. b)-space. After the two !ransformations, recursion (i) becomes
(2) C'(x) in H(y) + P(3) + S(y -13) + K ECR+'I.o (j, -1 - U)I],

where

(3) H(z) = cz + h(z),

(4) P(z) = pg-(z) - rz
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and

(5) S(z) = E[s(z - U) -. kc'(z - U) + (1- -)r(z- U)-.

The functions H, P, and S are respectively the aggregate inventory ordering-capacity cost, the
aggregate advertising-revenue cost and the aggregate shortage-holding cost. The prime indi-
cates that the parameter is from the following period. Also, a constant term, -rEU has been
omitted as it clearly does not affect the choice of the optimal policy. Note now that
C"'(x) 0 0. For a detailed discussion of these transformations, see Balcer 121 or 131.

In Balcer 131, under the mild condition that S is convex at 0,

(1) D+s(0) + r - Ac'71+ > -q_ (r - Ac') + D-s(0),

where D+s(0) (D-s(0)) indicates the right (left) derivative of s at zero and some weak condi-
tions at infinity,

(ll.a) D-H(oo) + D-S(oo) > 0,

(l.b) D-H() + D-P(o) > 0,

(l.c) D--P() - D+S(-o) > 0,

(l.d) D*H(-0) + D+S(-oo) < 0,

it is shown that C"(x) is convex and nvadecreasing in x and that a finite optimal policy exists.
Moreover, it is shown that the minimand in (2) is subadditive in (y, 3) and that the set of all
optimal policies for (2) is a nonempty compact sublattice. For sake of definiteness, the optimal
policy ((x). /3 (x)) is chosen to be the lexicographically least element of that sublattice.

From here on @"(x), "W(x)) denotes the optimal policy in period n whose components

are the optimal inventory and the optimal controlled demand and which minimizes the right-
hand side of (2). The smallest solution to the minimization of the total costs as given by (2)
when only one of the two variables can be chosen and when that variable is unconstrained is

denoted by 5,"(a) and "(x), respectively. (a is an arbitrary value taken by#3 when the minim-
ization is done over y only.) Also, the solution to the minimization of the total costs in period
n as described by (2) when the two variables are unconstrained is (y'", 3 "). This defines the
base stock level in period n (as we shall see below) whose components are the base inventory
level and the base controlled demand. The differences, '(x) - (W(x) and y" - j9 ", are the
optimal net inventory and the base net inventory in period n, rewritten F"(x) and z° ', respec-
tively. Finally, the solution to the minimization of the total present costs in period n as given
by the right hand side of (2) with the last term omitted is the myopic policy. In the preceeding
sentences, if we replace superscript n by subscript n we have the myopic counterparts of the
optimal solutions. For example, z,* is the myopic base net inventory in period n. In the sequel,
as mentioned earlier, the superscript n is omitted when no confusion is possible because of the
context.

Finally, the following theorem, which parallels similar results of Veinott 1211 for a mul-
tiproduct inventory model, holds:
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FLUCTUATIONS OF OPTIMAL INVENTORY POLICY 623

THEOREM 1: Under the above conditions, 3(x)- x V ?(8 *) and W(x) = (y V x)
where . and 3 are nondecreasing on their respective domain.

The symbol V denotes the maximum of the two elements on each side of it. In addition,
if this additional condition holds,

(11) D- H (0) + D- S (0) < 0,

the optimal policy is nonnegative and -q does not need to be convex.

3. MONOTONICITY OF THE OPTIMAL SOLUTION IN THE AGGREGATE COSTS

In this section, we will describe the changes in .W(x), /"(x) and ?(x) when changes
occur in the aggregate costs H, P and S. The importance of this and the following section
results from the ability to predict changes in the optimal strategy when some underlying condi-
tions are changing without having to recompute the optimal policy. As one is unfamiliar with
these aggregate costs, the results of this section will not be as intuitive as those of the next sec-
tion which are in terms of the primary costs and the demand distributions. We prove all the
monotonicity results with the aggregate costs as the proofs are sharper and the results specialize
easily to the primary costs.

Before proceeding, additional notations and a lemma on ordered sets of functions-to be
defined below-have to be set. The class f0 of all real-valued functions on R can be quasi-
ordered by the incremental order defined as follows. First, write &j - &J' on R if wv - W' is con-
stant on R. Evidently - is an equivalence relation on 0. Now, cv is incrementally smaller
than w' E 0 written w < (a', if for all v < w E R, w (w) - w (v) < c'(w) - w'(v), if wo and
wU' are differentiable, it implies that wo (v)/8v < ac'(v)/&v for all v E R.

LEMMA 1: If 09 df' C f) and l' is a chain, then w (v) is superadditive in (w, v) on
0'x R.

PROOF: Suppose (wv, v). (wv', v') E 0' x R are incomparable. Since (I' and R are chains,
we may suppose o <(U' and v > v'. Then ((a A w') (v A v') + ((a V w')(v V v') = W (v') +
w'(v) > c'(v') + w (v) by definition of <, completing the proof.

If o" and w'" are sequences of real-valued functions, i.e., "= (W, w. ,%) and w"-
... ), write w'n K (o' if wv, < v, for i = n. N. If 0 is a quasi-ordered set, its

dual, fl *, contains the same elements with the ordering reversed. In other words, if W and cW'
belong to (I and w < w', then w and w' belong to fl * and w' < wv.

Denote X, 9, and Y., the casses of all real valued continuous convex functions H., P.
and S,, respectively, satisfying condition (11). Denote by Jr,,, Y, and Y$,, respectively, given
chains in X,,, 9, and 5f. The sets X, Y ", , ,', Y', and 9'" are defined similarly. In the
sequel, it is understood that these sets are ordered by the incremental order. In order to exhi-
bit the dependence of j"(x) and Yn(x), say, on the aggregate costs, we write . (x; cv") and
j (x; w,,) instead of i"(x) and .,,(x), respectively, where wU can be either H, P or S. In
Theorems 2, 3 and 4 to follow, all parameters of the problem are held fixed but for the one so
specified in the theorem. Changes in the optimal policies are linked to the variations of the
aggregate ordering-capacity cost H, the aggregate advertising-revenue cost P, and the aggregate
shortage-holding cost S. The next four theorems, particularly Theorem 5, are an extension of a
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result and a proof of Veinott [231 for the impact of future demands on current optimal inven-
tory level; this result was subsequently extended by Topkis [16] for the impact of future cost
functions characterized by a single parameter on current optimal inventory level.

THEOREM 2: For all n, (x; H') and i(x; H') are nonincreasing in H' ont '", 3(x; H')
is nonincreasing in H, and nondecreasing in Hn+ on &Y", f (x; H") is independent of H. and
nondecreasing in H"n1 on X'", and C(x; H") is superadditive in (x, H,) on R x &,' for
i-n .... N.

PROOF: See Appendix.

THEOREM 3: For all n, B (x: P') is nonincreasing in pn on?', (x; P") and f(x; P") are
nonincreasing in P, and nondecreasing in P" + on Y"; i(x; P") is nondecreasing in P, and
nonincreasing in P"+1 on Y", and C(x;P") is superadditive in (x. P,) on R x Y,' for
i- n. N.

PROOF: See Appendix.

THEOREM 4: For all n, 1(x;S") and ](x; S") are nonincreasing in S" on Y ", /3(x;Sn)
and 1 (x; S") are nondecreksing in S" on J"; also C(x; S") is superadditive in (x. S) on R xY9,'
for i= n. N.

PROOF: See Appendix.

In Theorems 2, 3 and 4 we establish that an increase in any present and future aggregate
costs lead to a lower optimal level of inventory on hand both before and after adverstising.
This is to be expected, as the cost of capacity goes up, less inventory is purchased in anticipa-
tion of sales; also, as the cost of advertising goes up, less advertising will take place, thus less
inventory is needed; and finally, as the holding cost function increases, less inventory is pru-
chased, so less will remain at the end of the period, thus reducing the holding costs. The situa-
tion is a bit more delicate for the optimal level of advertising. Recall that bW(x)= g (&W),
where g-1 is monotone increasing. When capacity cost increases in the present period,
advertising is reduced as the cost increase has led to a reduced inventory on hand to be sold;
but when capacity costs increase for the future periods, advertising is expanded in the current
period to increase current demand and therefore reduce the initial inventory level in future
period. Obviously, as advertising cost increases in the current period, the amount of advertis-
ing is reduced; however, as advertising costs increase in subsequent periods, current expendi-
tures on advertising will increase as the total advertising budget is shifted in favor of the
current period which is thus made relatively cheaper. Finally, as the holding cost functions
increase in either present or future periods, it results in increased advertising to generate more
sales, and to reduce the terminal inventory level, thus reducing holding costs.

The results of the last three theorems are summarized in Table I for comparative pur-
poses. A plus indicates that the solution is nondecreasing in the aggregate cost and a minus
indicates that the solution is nonincreasing in the aggregate cost. For example, "(x) is nonde-
creasing in P,, and nonincreasing in Sn.

4. MONOTONICITY OF THE OPTIMAL POLICY IN THE PRIMARY COSTS
AND THE DEMAND

In this section, we apply the results of Section 3 to obtain the monotonicity properties of
the optimal policy in the costs and the basic demands. The results of this section tell us what
happens to the optimal inventory level .j (x; -) the optimal controlled demand (x;. ") thus to
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FLUCTUATIONS OF OPTIMAL INVENTORY POLICY 625

TABLE I - Monotonicity of the Optimal Policies in Aggregate Costs

Ordering-Capacity Advertising-Revenue Holding-Shortage
Present and Future

Present Future Present Future Sn
H. H" P. Pn+I

Inventory Level
(X; "")---

Net Inventory Level
i(x, .") - - + -

Advertising Level
b ,X, g-'(X,.))+ + +

the optimal advertising level b(x, h) and to the net inventory level i(x; -) when any primary
factors change either in the current or in a future period. Note that when a factor is
represented by a function, an increase in the factor means that it is now represented by a func-
tion which is greater than the previous one according to the incremental order.

Before linking the variations of the aggregate costs to those of the primary costs and thus
predicting the variations of the optimal policies, we shall establish some results for the varia-
tions in the demand distribution. The set. Yof all demand distributions on the nonnegative real
half line can be partially ordered in a natural way by a stochastic order defined as follows. We
say F EJ5 is stochastically smaller than G E , written F C G, if F(u) > G (u) for all real u.
LetTM be the N - n + 1-fold cartesian product of A Then we say F" =_ (F . F.. ,N) E 9Ris

stochastically smaller than G1= (G, GN) E9P, written F" C G', if F, C G, for
= n. N. In the sequel it is understood thatf is always partially ordered by stochastic

order.

THEOREM 5: For all n, j (x; F) and i(x; F') are nondecreasing in F" on , (x; F)
and A (x; F) are nonincreasing in F" orTM; also, C(x; Fn) is subadditive in (x, F') on R x 5,
for i - n. N.

PROOF: We assert that F" C F'T in " implies that S" > S'" in Y', where S and S' are
defined by equation (5). To see this, for i > n, let U!- F'7'(V) and U, - FF-(V) where Vis
a uniform random variable on [0, 11. By the stochastic ordering, F - ' (V) < F-( V) for all
values of V. Thus, by convexity of S, if v < v', then for all z < z, S(z'- v) - S(z - v) >
S(z' - v') - S(z - v'). Replacing v and v' by F-I( V) and F'( V), respectively, we conclude
that S > St for all i, thus S" >, S'" in 5f". This completes the proof of the assertion. In the
proof of Theorem 4, A EC(q (z - U); S"+') is a function of F. but not of S.. However, since
C"+' (x)) is convex nondecreasing in x, xEC (q (x - U)) is convex nondecreasing in x, then
by Lemma A2, \EC('q(z - U);SM+I) is subadditive in (z, F.). With this modification, the
proof carries over implying the results.

So, as present or future expected demands increase (F stochastically smaller than G
implies that the expected demand based on F is smaller than the one based on G), the optimal
level of inventory should increase. Surprisingly, as present or future demand goes up, the
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optimal advertising level decreases. This leads us to believe that advertising is done to compen-

sate for the lack of demand in the market, though we cannot conclude that advertising expendi-

tures are countercyclical to market demands. This analysis will be pursued in Section 7 were

fluctuations over time are investigated. But why are advertising expenditures decreasing when

the demand picks up? Since, in the present model, total demand is a sum of a stochastic
demand-a component that varies exogenously-and a controlled demand which depends on

the advertising expenditures, advertising is not more or less effective in generating demand

when the stochastic component of demand is great or small. At first, it appears that advertising

expenditures should be constant, but if we think of the controlled demand as demand that is

purchased at a price, its price goes up with an increase in stochastic demand. This is so,

because at higher stochastic demand, holding advertising expenditures constant, more demand

is generated, more inventory is needed and the capacity cost of the last unit increases with

inventory, making the last unit of advertising expenditures unprofitable. Therefore, as stochas-

tic demand goes up, advertising expenditures are curtailed.

LEMMA 2: For all n, 0"(x) is nondecreasing in r, for 7- < I.

PROOF: In equations (4) and (5), the mixed partial derivative of P(3) with respect top3

and r. is - 1, the mixed partial derivative of S (y - 1) with respect to y and r, is

-(1 - _)F(y - 1), where F(z) - I - F(z), and the mixed partial derivative of S(v -3)

with respect to P and r, is (1 - -_)F(y - /3). Therefore, since S(y - /3) is convex, the right

hand side term in (2) is subadditive in (y, 6, r,) by example A6 and Lemma Al. By Theorem

A2, the least element, (ji(x;r"), P (x;r")), minimizing the right-hand side term in (2) is non-

decreasing in r. This completes the proof.

Using (3), (4) and (5) the variations in the primary costs result in variations of the

appropriate aggregate costs and Theorems 2, 3, 4, or Table 1, Theorem 5 and Lemma 2 apply.

All the results regarding variations of the optimal policies are reported in Table 2. Certain

parameters have more complex variations and no result on optimal policies can be ascertained

for their variations in future periods. However, by restricting ourselves to the current period,

variations of the myopic policies can be linked to those of the primary costs. Again, using (3),

(4) and (5) with Theorems 2, 3 and 4, variations of the myopic policies are reported in Table 3

for the primary costs when no results for the corresponding optimal policies were obtainable.

The convention used in Tables 2 and 3 is identical to the one in Table 1.

TABLE 2 - Monotonicity of the Optimal Policies in the Primary Factors

Demand Capacity Advertising Holding Revenue

Distribution Cost Cost Shortage per
Cost Unit Sold

Present Future Present Future

FR h. h"f 
+ 1  

p(g-') I) t
( 1  .l  n- n T

Inventory Level
Y(x. "R) + . . . .. + + ±

Net Inventory Level
Z(x, ") + - - + - - ± - -

Advertising Levjl
W(x, ") - g- (

,
- - + - + + + + +
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TABLE 3 - Monotonicity of the Myopic Policies in the Primary Factors

Dicont Unt rdrig Inventory Demand
DiRaute Uni tdrn Survival Backlogged

Rat CstRate Rate

Present Next

_____________ ______ 1______+a r > tc r-A c r< Ac

Inventory LevelI(;. + - + + - invariant +
Net Inventory Level

X. + - + + - invariant +
Advertising Level
b (x, ) - g-'(0 (X-,-,) + invariant -

The interpretation of the r q~uits reported in Table 2 for the variations in the stochastic
demand, F", have been discussed above following Theorem 5. The next four entries on capa-
city costs and advertising costs can be analyzed along the lines of their corresponding aggregate
costs H and P (see Section 3). The holding-shortage cost function, s, is more interesting as it
models two costs: when the terminal inventory is positive, it is the cost of holding the inven-
tory and storing it and when the terminal inventory is negative, it is the imputed cost for hav-
ing unsatisfied customers (akin to the penalty for not fulfilling the terms of a contract or, as a
modeling short cut, it is a proxy to incorporate the loss resulting from a reduction in future
demands due to bad service). For simplicity, let s W) = s~z' + s-z- where s~, s- >, 0; if s' is
greater than s, then s+ >, s, and s- (< s-. So, an incrementally larger holding-shortage cost, s,
means a larger holding cost, s+, anid a smaller shortage cost, s-. With this in mind, the expla-
nation given in Section 3 for the variations of the optimal policies in terms of S carries directly.
Finally, if the sale price in the current period, r, increases, it is natural to increase advertising
expenditures as they are more profitable and to increase inventory to close these sales quickly.
This is not true when 71- > 1, this is not too surprising because, in this case, as the customers
are waiting for their order, they increase the size of their order (like hoarding or panic-buying
by consumers in face of shortages). Thus, by possibly having lower inventory on hand, the
increased demand by unserviced customers may More than offset the penalty cost.

In Table 3, a decrease in the cost of money (an increase in the discount rate X) fosters an
increase in the inventory level as inventories become cheaper and also, because inventories are
cheaper to hold, sales through advertising, i.e., sales that are purchased to a certain extent by
the seller, are reduced. Finally, adjustments in the inventory levels to change in unit ordering
costs for the present and the next period follow a predictable pattern: today's price goes up,
postpone the purchases; tomorrow's price goes up, build up the inventory now.

5. FLUCTUATIONS OVER TIME OF THE OPTIMAL SOLUTIONi IN THE MYOPIC POLICIES

In this section, we will show that the fluctuations of the optimal policies over .1me are
linked to the variations of the myopic policies. The variations of the myopic policies are taken

as given, no attempt is made in this section to link them to variations of the parameters.
Before studying those fluctuations, we must prove two preliminary lemmas. First, establishing

VOL. 23. NO. 4, DECEMBER 1981 NAVAL RESEARCH LOGISTICS QUARTERLY



628 Y. BALCER

a sufficient condition for the base optimal policies to equate the base myopic policies. Second,

ranking the base optimal policies with respect to the base myopic policies. Let F, ' (0) be the

infimum of those z such that F.(z) > 0.

LEMMA 3: lfi1(z* - F.'(0)) < y*n+I, then y M = -y. and36 n3.

PROOF: Since U >, F '(0) and n is nondecreasing, n (z * - U) y*f+l for all values of

U. Thus, the point (y*",1) is in the interior of the half-space delimited by

7)(y -13 - F,-1(0)) K yl+I and in that half-space EC+ 1('i(y -13- U)) is constant. There-
fore, y*" = y* and/3 " )3, completing the proof.

LEMMA 4: Always, y*" < y. and 13(x) >,(x) for all x.

PROOF: In equation (2), both S(y -13) and XEC"*1 [tq(y -13- U)] are functions of
y - 0 alone. In addition, C" ' is nondecreasing on R; thus S'(z) = S(z) +
X EC""'[q (z - U)1 is incrementally larger than S(z). Hence, by Theorem 4, the result follows.

Lemmas 3 and 4 have linked the myopic policy and the optimal policy in the same period.
The next three corollaries establish a relationship between optimal policies in different periods.
To obtain simple results, we must define a new condition on 7):

(IV) Either y: > 0 and71+. < 1 for all n, orq +, = - I for all n.

The nonnegativity of y,* can be insured by Condition (III) or the restriction y >, 0 on the

minimizing space in (2).

COROLLARY 1: If Condition (IV) holds and y* > y*+,, then n(x) >T.n+I (x) for all x.

PROOF: See Appendix Corollary I'.

COROLLARY 2: If Condition (IV) holds and either y <KY y*+ and y * > yfn+l, or
Y* < Y.+j and yfl > y"n', then 1jn'W(x) > y +2 (x) for all x.

PROOF: See Appendix Corollary 2'.

COROLLARY 3: If Condition (IV) holds and yfl < y, then jn(x) > yn"l(x) for all x.

PROOF: Assume there exists x such that 7W(x) < jin"(x). Because jn(x) - yfn V x,
yon < y*f+I. By Lemmas 2 and 3, since dq(y*"- F,-'(0)) < y *+I, y*- y* contradicting the

assumption. This completes the proof.

These three Corollaries are the building elements of our analysis of the impact on optimal
policies of the variations over time in the myopic policies. Corollary 1 establishes that a decline
of the myopic policies from one period to the next, implies a decline of the optimal policies.
Corollary 2 states that, if myopic policies increase from one period to the next, while the

optimal policies decline, then the optimal policies must also decline at a later time. Finally,
from Corollary 3, we get that if an optimal policy is strictly smaller than the corresponding
myopic policy, then the optimal policy in the next period is no greater than the present one.

We summarize these results in a very simple theorem. To that end, we partition time into
intervals T, on each of which y4 is unimodal in n.
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THEOREM 6: If Condition (IV) holds and y, is unimodal in n on an interval T, then
.Y(x) is unimodal in n on T. Moreover, the least mode m' of yfn on T does not exceed the
least mode m of y on T. Finally, yfn_ yn* for n < m' on T.

PROOF: Let m be the least mode of y, on T. The assertion is true if y*"- y. for all
n E T. If not, there exists a least k E T such that y4k < yA,. If k > m, Corollary 1 implies
that m' equals m. If k < m, by Corollary 3, Y*+I > yk, > y*k > ykAl. Applying Corollary 3

successively for k. m - 1, one sees m' equals k or k - 1. If k - m, the result is immedi-
ate, completing the proof.

Theorem 6 is a natural extension of Veinott's [241 original work linking the optimal poli-
cies to the myopic policies over time in the context of a one commodity inventory model. This
theorem says that when y*, the myopic policies, are unimodal over time, the optimal policies
y: are unimodal. Moreover, the mode of y: never precedes the mode of y*"; when increasing,
the optimal policies are equal to the myopic policies possibly with the exception of the last one;
and when optimal policies decline in one period, they decline from that moment on in the
interval T, i.e., until at least the moment the myopic policies increase again after having them-
selves declined. All these results have been expressed in terms of y:, but, by Theorem 1, they
extend directly to "(x) - y*' V x. The results are illustrated in Figure 1, where the graph of
y: is represented by the dashed line, the graph of y"" by the solid line and, when there is no
solid line, by the dashed line. The graph of Yn(x) is represented by the dotted line and, when
there is no dotted line, by the graph of y*n. One situation is not illustrated on the graph: the
case when both the modes of yf' and yn* coincide in time with possibly y*n - yn.

Inventory ; , ; \

.... / r ,, nI•- W . . .......
iI

1 ",
I \

'i I '1
* I :

I ., S S I >...

M TI t m T2  3 T 3

Time or period

FlotRE 1. Fluctuations of the optimal inventory policies y(x) and base inventory level
y" as a function of the variations of the myopic policies y. over time.
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Similar results are derived for the optimal net inventory policy which is the difference
between optimal inventory policy and optimal controlled demand generated by advertising. The
importance of deriving results for the net inventory level will be perceived in the next section,
as they carry additional information about the fluctuations of the optimal policies over time.
First, a technical lemma is proved followed by an adapted version of Corollaries 1, 2 and 3 and
Theorem 6.

LEMMA 5: If 7_, - 0. ° = 0, and z' < z 1 , then y " - y and

PROOF: Since z*" < zn + 1 - - 1,+' K 0, the point (y", 60 fl) is in the interior of the
half space y - 9 < 01. And on that half space EC"+1(7),(y - - U)) is constant because
q - 0. Therefore, y" - y* and 0 = * by the convexity of the three first terms in (2) com-
pleting the proof.

COROLLARY 4: If Condition (IV) holds and z4 > z,*+1 , then z*" > z*"+1.

PROOF: Assume the contrary, i.e., z" < z*"'+ . By Condition (IV), there are three pos-
sibilities, viz. (i) 7+. - 1-. = 1, (i) y-n+' > 0 and y-"+I V 71_ > 0 and (iii) y*"+ - 0 and
71,n- 0. In the first two cases -'r(z*') < y*"+1 so z*"= z. by Lemma 3. In the third case
z*"- z by Lemma 5. Thus, by Lemma 4, in all cases z*" - z* > z4+, > z n+I, which is a
contradiction and completes the proof.

COROLLARY 5: If Condition (IV) holds and z*" < z, then z*" > *n+ 1.

PROOF: Assume the contrary, i.e., z" < z* " + . It follows from Condition (IV), as in
the proof of Corollary 4, that z*" = z, which is a contradiction and completes the proof.

COROLLARY 6: If Condition (IV) holds and if either z* < z*+, and z*" > z°'+1 or
z4 < z4+1 and z' >/ z

* "+I, then z*' + 1 > Z *n
+ . n

PROOF: Assume the contrary, i.e., z*"+1 < z*" 2. Then from Condition (IV), as in the
proof of Corollary 4, z"" -

= ,+z,. Hence, by Lemma 4, z*"+ - z+, > , 4 z: >,-
with either the first or third inequality being strict. This is a contradiction and completes the
proof.

THEOREM 7: If Condition (IV) holds and z is unimodal in n on T, then z*" is unimo-
dal in n on T. Moreover, the least mode m "of z*" on T does not exceed the least mode of z:
on T. Finally, z*'- z for n < m "on T.

PROOF: Identical to that of Theorem 6 with Corollaries 4 and 6 replacing 1 and 3.

We can now define a new condition to assure strict results in Corollaries 1, 2, 3, 4, 5,
and 6:

(V) Ifq+. - I. then F-1(0) > 0.

In all the results concerning the base inventory, y*", in Corollaries 1, 2 and 3 and the base net
inventory, z*' in Corollaries 4, 5 and 6, the last inequality sign can be replaced by a strict one,
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under Condition (V). This is so because, if either q+,, < I or 1,- I and F (0) > 0,
z* z" + impliesq (z* - U) < y*M+

6. FLUCTUATIONS OVER TIME OF THE OPTIMAL SOLUTION
IN THE AGGREGATE COSTS

In this section, we link the fluctuations of the optimal solutions with the variations over
time of one aggregate cost while the other two remain stationary. Thus, we can tell, for exam-
ple, when the advertising costs change with the seasons, what should be the pattern over time
of the optimal policies without any computations. Clearly, without computations, we cannot
hope to find the exact value of the optimal policies, but many potential candidates can be dis-
carded at a glance. Say, optimal advertising expenditures must peak during the cheapest month
for advertising, so any planned expenditures over time which do not peak at that time, are not
optimal and should not be implemented with that timing.

For notational simplicity, let y*(to,) denote the myopic base inventory in period n when W
varies from one period to next; as usual, c can take the value H, P or S. This obviously
applies to all other policies as well. The reader should note that, for the first time, stationarity
over time of certain costs is required. By convention, only the parameters specifically exhibited
vary over time. Also, the reader should be aware that comparing y*(w") and y*(0"+) is not
that simple even when W. is comparable to w,,4+ (larger or smaller by the incremental order-
ing), because we are comparing (W,., n+Ci,. .. +2 ... ) with (Wn+l, Wn+ 2, ... ), not (W,,, Wn+i ,

n+2, ... ) with (a4 , 4+1, 4+2, ... ) as was done in Sections 3 and 4; the former are not com-
parable, while the latter were. However, by Theorems 2, 3 and 4, we can derive results on the
myopic base stocks because we compare the period one by one, i.e., compare (Un to W,.+i, not
aj" to W"+ . Since all other parameters are stationary, comparing w, to W,1+1 is equivalent to
comparing w,, with o, in the same period. Therefore, if w,, < w,.+, and y(W) is increasing in
W., then y°(Wn) is increasing in w, and y(w,,) < y*(w,,+1 ). Expanding on this theme, let w.,
n - 1 .... , N be such that w, is comparable to n+i for all n. It follows that all the y(W.n) are
comparable with the same pattern. Note that (an and Wn+2 are not necessarily comparable
because possibly Wn < (On+i and W,.+i > Wn+2. Thus, we can replace the conditions on the
myopic base stocks in Theorems 6 and 7 by a condition on the parameters directly and the con-
clusions of these theorems still hold.

The rest of this section is concerned with establishing the relationship over time of the
fluctuations of the optimal policies and of the base stocks with the variations of the aggregate
costs. Corresponding to the variations of each of these aggregate costs, there are types of
fluctuations for the optimal policies labeled Type P, H and S in the obvious fashion. This con-
vention will prove useful when primary costs are examined in the next section.

THEOREM 8: (Type P). Let Condition (IV) hold. if the model is stationary, except
possibly for the Pn, and if P, and P+i are comparable for all n, the myopic policy is optimal in
every period for all intitial inventories x < y*(PI). Moreover, is(P"), )Z' (P")) W W "),0(P.), z' (P,))

PROOF: See Appendix.

If x < y°(P), the optimal policy U7(x), n(x)) is equal to the base myopic policy
(.n, '). It says that when advertising costs vary over time, the manager should react as if
short-sighted, i.e., pay no attention to the parameters of future periods. Also, both advertising
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expenditures and inventory levels are countercyclical to variations in the advertising cost func-
tions, with perfectly matching cycles. Noting that the net inventory positions are procyclical
indicates that the induced fluctuations over time are larger for the advertising expenditures than
for the inventory. These results are what we would have expected, at least regarding the anti-
cyclical behavior of advertising expenditures and inventory positions. The results of this
theorem are illustrated in Figure 2, where y*(P"), 3 (P"), and z*'(P") are plotted. The solid
line represents y°(P), the dashed-dotted line 3 (Ps) and the dotted line z*(P"). The reader
should not forget that the driving force behind these fluctuations are the variations of P,, which
are not represented on the graph-they are on an uncomparable scale-and which are perfectly
anticyclical to y*(P.) - y,(P"). For continuity of the representation of the optimal solutions,
the graphs of y°(P) in Figure 2 and y: in Figure 1 are identical.

StkY_*(pn) Y*(P) = n~;~

'I.
lL

I I T2 T

* "\ I ; 1,,
/ i.* ' I:" i \*/" I I

/' Z 9&_n)- I. __ _

Time or period

FI*uRE 2. Fluctuations (Type P) or the base stocks with respect to variations in P.,
over time, whose variations are perfectly ant icyclical to those of v*(P.).

Next, we examine the fluctuaikns (Type M) induced by the variations of the aggregate
ordering-capacity cost.
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THEOREM 9: (Type H). Let Condition (IV) hold. If the model is stationary, except
possibly for the H., and if H. in A' is unimodal in n on an interval T with least mode m, then
y(H ") and z(H") are unimodal in n on T with respective least modes m' and m ", such that
m" < m' < m. Moreover, (y(H"), Pf(H), z'(H")) (W(H), p(H), z*(H.)) for
n < m ", and 3 * (H") is nondecreasing in n < m.

PROOF: See Appendix.

As expected from the discussion following Theorem 2, the base levels y, j * and z, vary
in an anticyclical manner to the variations of the aggregate ordering-capacity cost overtime.
The time of highest cost corresponds to the time of lowest base levels, but the base inventory
and net inventory peak before the moment when the aggregate cost reaches its lowest level.
Since inventory is not necessarily sold immediately, the inventory purchases of yesterday may
last until tomorrow when the costs start rising again; so, in anticipation, inventory levels are
curtailed while the costs are still declining. On the contrary, advertising expenditures which
generate current sales do not peak before the time of lowest cost. The results of Theorem 9
are illustrated in Figure 3, whence the convention used in Figure 2 is maintained; in addition
y*(Hn) is pictured by a dashed line, and the variations of H not pictured in Figure 3 are
exactly anticyclical to those of y*(H,).

Stock / :Y*(H

.. . . . .. . ...
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Finally, we turn our attention to the fluctuations (Type S) induced by the variations over

time in the aggregate shortage holding costs, Sn.

THEOREM 10: (Type ). Let Condition (IV) hold. If the model is stationary, except
possibly for the S., and if S. in Y9 is unimodal in n on an interval T, then y*(S"), z'(S) and
P "(S) are unimodal in n on T. Also, the least mode m' of z(S) is no larger than that of Sn.
Moreover, each mode of z"(S) is no larger than that of S,,. Moreover, each mode of z*(S') is
a mode of y(S) and -3 "(S"), and (yv(S"),/3 (Sn), z(S)) - (y*(S,), 03 *(S.), z*(S.)) for
n < in'.

PROOF: See Appendix.

Again, as expected from the discussion following Theorem 4, the base levels of y*, -is
and z* vary in an anticyclical manner to the variations of the aggregate shortage holding cost
over time. The time of highest cost corresponds to the moment of lowest inventory and net
inventory positions and highest advertising expenditures. For the same reason as in the previ-
ous theorem, the inventory peaks before the time of lowest cost, in anticipation of future
higher costs. This particular type will be discussed further in the next section in conjunction
with variations in the demand. These results are illustrated in Figure 4 where the conventions
used in Figure 3 are maintained.
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As mentioned earlier, results of Theorems 8, 9 and 10 extend directly from the base
inventory levels y*" to optimal inventory levels 'Wx because OW(x = y"n V x. They extend
also to 13'(x and ?W(x when the myopic policies are optimal using Theorems 2, 3 and 4. But,
wrhen myopic policies are nt optimal (see Theorems 9 and 10), they cannot be extended to
13'(W and ?W(x, because in Lemma 3, 13* = 13 *" does not imply 13(x W - (x); however, the
fluctuations of (3"(x and ?W(x are unlikely to deviate strongly from A *" and z*", though a
counter example should not be hard to construct.

7. FLUCTUATIONS OVER TIME OF THE OPTIMAL SOLUTION IN THE
PRIMARY COSTS AND IN THE BASIC DEMAND

In this section, we will establish that, under variations of either the primary costs or the
basic demand, the fluctuations of the optimal solution are of either Type H, P, or S. as defined
by Theorems 8, 9 and 10. Since Condition (IV) holds in every theorem, we will assume
throughout this section that Condition (IV) holds.

Also for clarity, the results, which are obtained directly from Tables 2 and 3, will be sum-
marized in Table 4. The first column of the table contains the nonstationary factor in each
case; once more, we remind the reader that only one factor in each case is nonstationary over
time. The second column indicates the ordering used. In the third column, a minus shows
that the order in the set is reversed, and a plus is used otherwise, Note that in Theorems 8, 9
and 10 the order is reversed. In the fourth column, the types of fluctuations are indicated by
either H, P or S, as defined in the previous section.

TABLE 4 - Fluctuations of the Optimal Policies with the Primaryv Costs and Demand

Ordering
Nonstationary parameter Type Natural (+) Fluctuation

_________________________________Reversed () Type
Advertising cost P Wb") incremental -P

Sales price r, (7) - I) real + P
Capacity cost h incremental -H

Backlogged demand factor 71- (r - X c) real + -invariant

Backlogged demand factor n-, (r < X c) real + S
Backlogged demand factor 71-. (r > X c) real -S

Inventory preserving factor -q + real + S
Discount factor X real + S
Holding and shortage cost s incremental -S

Basic demand distribution F stochastic + S

Most of the results in Table 4 can be interpreted along the lines that followed Theorems
8, 9 and 10 and the reader is referred back to the previous section. There are, however, three
cases that retain our attention: variations in selling price, in the discount rate (cost of financing
the operation) and in the stochastic demand. The strongest results are obtained for the varia-
tions in selling price when unsatisfied customers wait till their order is serviced. In that case,
the optimal inventory level and the advertising expenditures move in perfect harmony with the
variations in price, while the net inventory position varies in the opposite direction implying
that the swings of the advertising expenditures are relatively greater than those of the inventory
position. When the demand varies over time, the inventory level and the net inventory
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fluctuate in the same fashion while the advertising expenditures are countercyclical. In this
case, the peaks of inventory precede those of the demand, as sales are uncertain, no one wants
to have a too large inventory on hand during the decline in demand following the peak. The
cautious (and correct) approach is to retrench early. There is no need for this cautious
approach when prices vary, because in that case the demand is stable, and the objective is to
sell at the right time and, at no time is it better than when the prices peak. In a more general
and realistic model, both demand and prices vary simultaneously, likely in harmony. Our
results state clearly that the inventory level should follow that pattern, but they are ambiguous
regarding advertising expenditures. Finally, when the discount rate increases or, equivalently,
when the interest rate declines, the financial cost of holding the inventory (imbedded in this
model as the discounted value of the terminal inventory position) is reduced and it becomes
cheaper to hold larger inventory. As expected, advertising expenditures rise as the interest rate
rises to help liquidate the inventory position which has become costlier.

One case is not covered in this table, namely the variations of r over time when -q - < 1.
Let r, be unimodal in n on T Thus, under Condition (IV) and by Table 2, r*(r " ) is unimodal
in n on T with least mode m not exceeding the least mode of r,,. Also, by Theorem 6,
(3W(rn-) 3 *(r,- I ) < 0 *(r,,) = 1 r") for n < m. In addition, 13 *(r'-I) =  3(r,,_) <
1 *(r ) < 0(r"'), by Lemma 4. Moreover, if v(rn) > v*(r " +") and r, < rn,+ ,
z*(r") > q(z*(r " ) - F,-'(0)) > y*(rn+') > z*(r"n') by Lemma 3; thus, W)(r")=
13 (z(r"); r,) is nonincreasing in z°(r " ) and -r,, by an argument associated with equation (15).
Summarizing13 *(r") < 3 *(r"n+ ) when r, < r,,+,. So we increase the inventory position when
the sale price increases, but we start to reduce it before prices peak. On the other hand, as long
as prices rise, advertising expenditures rise, as their effect results in an immediate sale.

Obsolescence Probabilities

The discount factors A, with 0 < A, X I can be interpretd as the probability that the pro-
cess will continue in period n + I given that the process is active in period n. Thus, I - h,, is
the obsolescence probability in period n+l. Pierskalla [101 established that, with nondecreasing
obsolescence probabilities, i.e., A,, X/ ,+1 for all n and a positive ordering cost, the base stocks
are such that y 0 > ... > vy'". In Table 4, we obtain a more general result concerning the
relationship between the obsolescence probabilities and the base stocks. For example, if A,, is
unimodal in n, then y*" is unimodal in n with the time of its least peak not exceeding that of
A,. If A, is nonincreasing in n, we obtain Pierskalla's result that the same is so of j'.

8. EXTENSIONS

In this section, we generalize the model in two separate directions: convex ordering cost
for the inventory and common time lag in delivery and advertising.

First, if we replace the previous inventory ordering cost by the convex ordering cost
(z) - c(z) + cz in (2), we obtain:

THEOREM 14: If -q is linear, the assertions of Tables 1, 2 and 3 continue to hold for the
model of this section.
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PROOF: Upon noticing that the additional term c(y - x) in (2) is int ,ent of H, P
and S, the proofs of Theorems 2, 3 and 4 can be used directly since ) is linear. I hus, Tables I.
2 and 3 hold true in this case, completing the proof.

Karlin 151 claimed that, with convex ordering cost and no advertising, i.e., t (x) - 0, the
fluctuations of the optimal inventory policy can be linked to the variations of the demand distri-
bution over time. Upon reflection, this seems unlikely as the optimal policy responds not only
to variations in demand but also must smooth the size of the orders from one period to the
next, due to the added constraint of convex ordering cost. The following example provides a
counterexample to an analogue of Corollary I for convex ordering cost and no advertising. It
will show that even if the myopic policy falls and rises, the optimal policy keeps rising to
smooth the ordering cost overtime. Without such an analogue corollary, it is not possible to
establish a theorem analogue to Theorem 6, and therefore tae fluctuations of the optimal policy
cannot be predicted from those of the myopic policy.

EXAMPLE: Let - 1, H 0, P - 0, c(z) - S(z) - z2/2, U' - (10,0.100) and
N - 3. The myopic policies in each period are . 1(x; 10) = (00 + x)/2) V x,
. 2(x;0) = (x/2) V x and iv3 (x; 100) = ((100 + x)/2) V x. The optimal policies in each period
are: Y' (x, 10,0. 100)- ((5x + 180)/13) V x, 2(x;0. 100) - ((2x + 100)/5) V x and
33 (x; 100) - ((100 + x)/2) V x. Therefore, when x - 0, . ,(0;10) - 5 > h(0;0) - 0 <
. 3(0; 100) - 50, but jt'(0;10, 0. 100) - 13 11/13 < j2 (0;0, 100) - 20 < j 3(0,100) 50.

Second, if a common interval of time, P, is allowed to occur between the moments of
product ordering and of advertising purchase and the moments of the delivery of the product
and of the advertising effect, all the results of the previous sections hold, provided that

7)_ - I and (5) is replaced by

S(z)- Es(z- V)-Xc'z,

where V is a random variable whose distribution is the convolution of F. F,+,. In partic-
ular, if the comparison criteria F.C F,+1 or F, D F,+, is replaced by F. C F.+,+, or
F. D F++1 , as in Veinott [171, the results of Table 4 apply to the fluctuations of the basic
demand distribution.

9. CONCLUSIONS

This paper is an example of the use of dynamic programming in a nonstationary environ-
ment where properties of the optimal policies were derived successfully without resorting to
numerical computations or severe limitations on the cost functions-such as restricting them to
be quadratic. The methodology used in this paper can be applied directly to discrete time con-
trol problems, if the controls and nonstationary parameters of interest exhibit some subaddi-
tivity properties.

To come back to the specific model of inventory-advertisement treated in this paper, its
most peculiar feature is the fact that advertising expenditures should take place during periods
of low demand so as to smooth total demand over time. This corresponds well to our notion of
a sales campaign during the low season (cars in January, appliances around the same time,
winter equipment around spring time, etc.). However, it does not capture the fact that often
advertising expenditures peaked just prior to or at the peak of the season (ice tea commercials
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on TV during the summer, etc.). A more complex demand function is needed to handle this
'problem and possibly the simultaneous presence of two types of advertisement-procyclical and
countercyclical. Another factor that is neglected in this paper is the simultaneous presence of
more than one firm in the market, firms which compete for many of the same customers. This
gaming factor could very well reverse the results obtained here, but I would not like to venture
a guess at this stage.
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APPENDIX

THEOREM 2:

PROOF: Since S(z) + X EC[i7 (z - U); H"11 is convex in z, the term inside the braces
in (2) is subadditive in (yj3,H,,) on R x R+ x r', by examples A7 and A8 and Lemma 1.
Therefore, by Theorem A2, the least element, (j,(x H"), 3 (x, f")), minimizing the right hand
side of (2) over the sublattice {y > x,; 3 > 0) is nondecreasing in H, on ". Letting the sub-
lattice be {y - x, 3 > 0), we obtain directly that 3 (x; H.) is independent of H.

On eliminating3 by making the change of variables, z = y -13, recursion (2) becomes

(6) C(x;H") - min {H,(y) + P(y - z) + S(z) +k EC[b(z - U); H"m+n'}
y >_ x >, Z

We now show inductively that C(x;H") is subadditive in (x Hn) on R x %,. Since
C(x, H+ l) - 0, the result holds trivially for C (x; HN+I). By the induction hypothesis, exam-
ple A5, and the fact 7? is nondecreasing, XEC[n(z - U);Hn+l] is subadditive in (z,H" +l) on
R x '"+l*. Since P is convex, by examples A6 and A8 and Lemma 1, the term inside the
braces in (14) is subadditive in (yzH") on R2 x i" '"' By Theorem Al, C(x;H") is subaddi-
tive in (xH") on R xff'7, terminating the induction. By Theorem A2, the 2-lexicographicaly
least element, (T(x; H"), i(x; H)), is nonincreasing in H" on X".

If we make the same change of variables used above but instead eliminate y, recursion (2)
becomes

(7) C(x;H') - min IH,(18 - (-z)) + P(8) + S(-(-z))P_-(-Z);kX,i0)0
+ XEC1} (-(-z)-U) H"+q').
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The term inside the braces in (7) is subadditive in (-z,/3,H'1) on R x Rx a'; for i > n by
examples A6 and A8 because H. is convex. By Theorem A2, the least element, /3 (x;, H""')
right hand side of (7) is nondecreasing in H"~ on A"'. Let y - x, so the right hand side of (2)
becomes

(8) min (H,(x) + P(O) + S(x -/3) + AEC [n(x - 0 - U); H'+'])

The term inside the braces in (8) is subadditive in (B, .H) on R + x A',' for i> n. By Theorem
A2, the least element, /3(x;H"+') minimizing (8) over 1A3 , 0) is nondecreasing in H""1 on
ASn completing the proof.

The proofs of Theorems 3 and 4 are sketchy, as they follow the line of argument used in
Theorem 2. For detailed proofs, see Balcer 12J.

THEOREM 3.

PROOF: On eliminating /3 by making the change of variables, z - y - /3, recursion (2)
becomes

(9) C(x;P") - min (H(Y) + P,(y - z) + SWz + XEC[vl(z - W.);P"'I).

By induction C (x; P") is subadditive in (xi) on R x Y 7 for i - n. N. By Theorem A2
and equation (9), the 2-lexicographically least element, (j3(x;P"), i(x;P")), minimizing the
right hand side of (9) over ly > x. y >, fl, is nonincreasing in P'+' on Y". By Theorem A2
and equation (2), the least element, (U(x;P"), /3(x; PT )), minimizing the right hand side of (2)
over (y >, x, /3)0), is nonincreasing in P,, on Y,

If we make the same change of variables used above but instead eliminate y, the right
hand sj-e of recursion (2) becomes

(10) min (H(8 - (-z)) + P. (0) + S(- (-z)) + X EC [n (-(-z)- U), Pn+'J)

By Theorem A2, the 2-lexicographically least element, O/(x;P"), -Y(x;P")), minimizing the
term inside the braces in (10) is nonincreasing in P,, and nondecreasing in Pn+l onyh.

In equation (2), let y - x so its right-hand side becomes

(11) min(H(x) + P. (0) + S (x -/3) + XEC [n (x -/3 - U);P"+,I)

Thus, by Theorem A2, the least element, t0 (x,P"), is nondecreasing in P"+' and nonincreasing

on P. onw?". This completes the proof.I

THEOREM 4.

PROOF: First, on making the change of variablesp/ - y - z, recursion (2) becomes

(12) C(x;S") - min (H(y) + P(y - z) + S.Wz + X EC[9' (z - U): S"+'])
yo x.yo Z

By induction that C (x; S9 is subadditive in (xS") on R x Yf". By Theorem A2, the 2-
lexicographically least element, Uj(x;S"), Y(x;S")), of the minimizing set M"(x) is nonincreas-
ing in S" on Y".
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If instead of eliminating #3, we eliminate y by the change of variables y - 0 - z, recursion
(2) becomes

(13) C(x;S") - min (H(3 - (-z)) + P(3) + S.(-(-z))0-(-Z)>x.0 >0

+ XECn(-(-z) - U);S ,S .

By Theorem A2, the 2-lexicographically least element, O(x. Sn), - (x.S')), minimizing the
term in braces in the right hand side of (13) is nonincreasing in S" on

If we set y - x, the right hand side of (2) becomes

(14) min (H(x) + P(O) + S,(x -(3) + X EC 17'(x -3 - U)S"+ J).

By Theorem A2, the least element, 0 (x;S"), minimizing the term inside the braces in (14), is
nondecreasing in S" on 5", completing the proof.

Let i W,- 71x) V x, SO (x) (n+ V 0~X+ - ('Q-^ Ai)x-.

COROLLARY 1: IfyA >y Y+, then ii'(x)) W 1vn+I(x) for all x.

PROOF: Suppose there is an x such that iI(2(x)) < n+'tW. We must have
x < y*" V yl+ l for if not, i(x) < x < ij(x) which is a contradiction. Also, x > ye" A yn+I
for if not, i(zen- F,'(O)) 4 w() < yoe+t. Then by Lemmas 3 and 4, y"n- y* >
y,+ > y*,+I > ii(ye) > yen, a contradiction. Thus, we have y"MA yen+l < x <
yen V yC,+i. Now if y*n < yn+l then i(yl" ) < i(x) < yf+I, so by the previous argument
we have a contradiction. If instead yen+I < y* then y*" < j(,vn) < x < ye*, a contradic-
tion. This completes the proof.

COROLLARY 2'. If either y: < y:+, and yen > yen+I or yn < yn+, and yen > yen+ ,
then -n (z*n+ I - (0))1 > y)) +2t+ > y.+2 and i(n+I(x)) > +W(x) for all x.

PROOF: Assume -l(z*"+I - F;,+' (0)) < yon+ 2. By Lemmas 3 and 4, yn+I - Y:+] >
A > yen > yen+', so equality occurs throughout. This contradicts ye' > yen+l in the first case
and y; < y:+, in the second. Suppose there is an x such that ij( +"(x)) < jn+2 (x). We
must have x < y.,+I V y.n+2 for if not, ii(x) < x -<i(x), a contradiction. Also,
x > y..+l A y.n+ 2  for if not, .i(y.n+I) < yCi +2  a contradiction. Thus, yCM+I A
yen+ 2 < x < y*n+I V yon+2 , Now if y*"+" < yon+2, then ,1 (yen+') < iX() < yon+2, a con-
tradiction. If instead yen+t > y~f+ 2 then y°n+l < j(yn+I) x x < y*D+I, a contradiction,
completing the proof.

THEOREM 8.

PROOF: If P, 4 P,+,, then by Theorem 3, z*(P.) < ze(P.+). Thus, if y*(P.) > 0 for
all n and n+ < 1, then ql(z*(P.) - F;-'(O)) < z*(P.)+ < z°(P.+i)+ < yo(p.+)- If
q+-q_- 1, then 7(z*(P.)- F;'(O)) < z*(P,) < z*(P.+) < ye(P+,+). Similarly, if
P. > P.+,, then by Theorem 3, y*(P.) K, y(P.+1 ), so q(z°(P.) - F;'(0)) < ij(y(P.)) <
ye(P.) 4, y*(P.+I) by Condition (IV) and ql nondecreasing. Thus in all cases,
,n(ze(P.) - F;'(O)) 4 y*(P.+1 ), whence by a result of Veinott (181, the myopic policy is
optimal for x K ye(PI). Thus (y,p) - (yv(P.), 6 *(P)) minimizes the term in braces in (2)
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subject to P3 > 0. But (y( W"), 3 '(P11)) is the least such minimum so yPW") <, y*(P, and
3 *(PW) < *3 (P.) . And by Lemma 3, 63 *W") 6 /3 (P,), so /3 *(Wn) - p/* (P,,). Also,
EC I(y - W(p) - U); P"~ is constant for y * y(P.) so (Y,fl) -= n. P)
minimizes H W) + P,,(83) + S (y - /3) subject to/ 9 > 0. But (y (P.). 0 (P,,)) is the least such
minimum, so y*(P,) 4 y*(P") and, hence, (y( W")./ (PTMW), z (P")) - (v P)
/3 *(P,,). z*(P,,)), completing the proof.

In Theorem 9, J%* is respectively (Jr*, ":1+1 .  K 2 ) where T-= In]- n21. In
Theorem 10, 5f' is defined similarly.

THEOREM 9.

PROOF: By Theorem 2, y*(H,) and z (H,) are unimodal in n on T such that the modes
of H,, on K'7r are modes of y*(H,) and z*ti,). Thus, from Theorems 6 and 7, v*(H") and
z'(H1) are unimodal in n on T such that in', m "< mn. If m' < in", then z*(H1) < :'(H"+')
for n in-m" - 1 < m, so by Condition (IV), Lemma 3, and Lemma 5, P 0(H11) = 6 * (H,).
Thus, by Theorem A2 and Lemma 5, P *(H") = A * (H,) < ( WP(, + ) K, 6/*(H11 +). But since
mi' n, Y*(H") > y*(H"+'), so z'(HW) >, z*(Hn+) which is a contradiction. Therefore.

M in'.

Now by Theorems 6 and 7, (yH MW), P *(W), z* W')) - (y(H)./A3*(Hfl), z(H,,)) for
nt < m' Thus, by Theorem 2 and Lemma 4, P *(H") - 6(H,,) <,/'(H,,+ 1) <,/P3(H"+1) for
n < m "~It remains only to show /3 *HW) is nondecreasing in nt for m"(4 n <_ m. To this end
consider

(15) Q (z; Hd min (H.(y) + P(Of)).

Since by Lemma 1, H,(y) is subadditive in (Y. H,) on R x Jr'* the least element (V,/P)=
(5 (z; H,), /3 (z; H)) minimizing the term inside the braces in (15)'over the indicated sublattice
is nonincreasing in H,, on Kr, by Theorem A2. Replacing y by 93-(- z) in (15), one sees from
the convexity of H,, and example A6 that the new term inside the braces is subadditive in
(8,-z) on the sublattice jig > 0). Thus by Theorem A2, fi(z~Hd is nonincreasing in z
Because S and C~1 in recursion (2) are functions of z alone, /3 (z* WH), H,) - P3 *(HI). Thus,
for m " 4 n < m, z*(H 1 ) > z*(H11") and W~ >, H" so 0/* (W) K, /(H11"), completing
the proof.

THEOREM 10.

PROOF: By Theorem 4 and 7, z* (S11) is unimodal in n on T with least mode not exceed-
ing that of S, onYf T. Now H(y) + P(y - z) is subadditive in (y,z) by the convexity of Pand
example A6. Therefore, by Theorem A2, the least y - .(z) minimizing H (y) + P (v - z
subject to y >_ z is nondecreasing in z. Thus, y*(S9) - 5(W (S")) is nondecreasing in z*(S19 so
y* (S") is unimodal in n and each mode of z' (S") is a mode of y* (S11).

Now H(z + /3) + P(3) is superadditive in (z,#3) by the convexity of H and example A6.
Therefore, by Theorem A2, the least ft - p zW minimizing H (z + S3) + P (8) subject to /3 >, 0
is nonincreasing in z. Hence, /3*(S") - 63(W(S)) is nonincreasing in z*(S19 so -P*(Sn) is
unimodal in nt and each mode of Z*(Sn) is a mode of W/(S), completing the proof.
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MINIMIZING THE AVERAGE DEVIATION OF JOB COMPLETION
TIMES ABOUT A COMMON DUE DATE

John J. Kanet

The University of Georgia
Athens, Georgia

ABSTRACT

This paper considers a single-machine scheduling problem in which penali-
ties occur when a job is completed early or late. The objective is to minimize
the total penalty subject to restrictive assumptions on the due dates and penalty
functions for jobs. A procedure is presented for finding an optimal schedule.

INTRODUCTION

For the most part, the literature of scheduling has been confined to problems involving
penalty functions which are nondecreasing in job completion times. Conway, Maxwell, and
Miller 12, p.12) refer to such functions as regular performance criteria. There are, however,
many applications in which nonregular criteria are appropriate. Applications of nonregular
measures occur, for example, in file organization problems. As indicated by Merten and Muller
[41, minimizing the variance of retrieval times for records in a file may be highly desirable,
especially in on-line systems. In spite of the importance of nonregular performance measures,
very little analytical work has been done in this area. This is primarily due to the difficulty of
solving this type of problem. The problem of minimizing completion time variance has been
studied by Merton and Muller [41, Schrage 151 and Eilon and Chowdhury (31. Merton and
Muller [41 have analyzed the relation between flowtime and waiting time variance. They do not
show how to minimize such measures but do show that if some schedule S minimizes (maxim-
izes) one of the measures, then the antithetical schedule S' minimizes (maximizes) the other
measure. They also show that the minimum value of both measures is the same. Schrage [5]
has examined scheduling for minimum completion time variance when there are up to 5 jobs to
be scheduled. Eilon and Chowdhury [31 have extended Schrage's work by showing that for a
schedule to have minimum completion time variance it must be V-shaped. Let job k be the job
with the smallest processing time of all the jobs to be scheduled. A schedule is V-shaped if the
jobs placed before job k are in descending order of processing time and the jobs placed after job
k are in ascending order of processing time. Eilon and Chowdhury 13] then compare various
heuristics for minimizing completion time variance.

Apart from the problem of minimizing completion time variation are those problems in
which the nonregular measure is a function of job lateness. Consider, for example, a job shop
which produces components for subsequent assembly into finished products. The due dates for
components are based on the assembly schedule of the end products. If component orders are
late then the assembly of a product may be delayed. The negative effect could be loss of
assembly efficiency and customer good will. If a component order is completed early it must
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wait in storage until the production date of the product for which it is needed. The negative
effect is an accumulation of component inventory.

Sidney has addressed the type of problem noted above and in 16J he presents an algorithm
for minimizing the maximum penalty when penalties are incurred both when jobs are com-
pleted early or late. In this paper we continue the work of Sidney by presenting a simple
[0(n 2)1 algorithm for minimizing total cost when costs increase linearly as a job's completion
date deviates from its due date.

THE PROBLEM

Consider a single machine with n jobs immediately available for processing. Associated
with each job i is its required processing time p,. All jobs have the due date d >, MS where MS
is the makespan of the job set, i.e.,

MS= I p.
f-I

The objective is to find a schedule S which minimizes

(1) Z(S) = abs(C - d)/n,

where C represents the completion time for job i and abs denotes the absolute value function.
Equation 1 is the mean absolute lateness (MAL) resulting from schedule S.

DETERMINING AN OPTIMAL SCHEDULE

If preemption is allowed, the problem is trivial. In that case an optimal solution with
MAL = 0 can always be obtained by processing the jobs in any order during the time interval
(d - MS, d). Every job is interrupted when it has an arbitrarily small amount of processing
time e remaining. After the initial processing of all jobs, the remaining n E amount of work is
completed. Since e can be made arbitrarily small, the completion date of each job can be made
to converge to d, that is, for each job i

lim (abs [C, - dl) = 0.
4-0

Thus in the limit, MAL = 0.

Suppose that preemption is not allowed. Then let B represent an ordered set of jobs to be
scheduled without inserted idle time such that the last job in B is completed at time t = d. Let
A represent an ordered set of jobs to be scheduled without inserted idle time such that the first
job in A starts at time t - d. The following algorithm produces an optimal schedule S, defined
by the permutation (B, A). Let U denote the set of unscheduled jobs. The symbol 4) denotes
the empty set.

procedure SCHED:

B -A -0;
while (U * (b) do

remove a job k from U such that pk - max pi;
N
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insert job k into the last position in B;
i'( U d P) do

remove a job k from U such that p, = max p,j

insert job k into the first position in A;

end
end
S - (B, A),

end SCHED

Figure 1 illustrates how the procedure works. In the sample problem there are five jobs with
processing times given. The due date for each job is t = 39. The five Gantt charts illustrate
how the algorithm progressively assigns jobs to the two sets B and A.

Problem data:

job identification : JI J2 J3 J4 J5

processing time : 7 12 5 4 10

due date = 39

B A

27

J2 35

27 49

32 31 is
20 32 49

3 2 7 31 J3 3s5
20 32 44 54

J2 it IJ J3 J5

0 16 28 35 39 44 54

time

FIUtE I. An example Problem and its solution by algorithm SCHED
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PROOF OF THE ALGORITHM

To prove the correctness of procedure SCHED first observe that it is unnecessary to con-
sider schedules that have idle time inserted between jobs in S. To show this is true, consider
any schedule S with idle time inserted either before or after d. If the idle period occurs before
(after) 1, remove the idle time by moving the jobs before (after) the idle period forward (back-
ward) in the schedule. The resulting schedule is an improvement over S since the completion
dates of all jobs affected are moved closer to d. This process can be repeated until all inserted
idle time is removed from the schedule.

A second observation is that schedules which have a job begin processing before d and
end processing after d need not be considered. To show this let S be such a schedule. Let k be
the job in S which is in process at time d (see Figure 2).

I p(b) p (a) -I

18!k A

d

Ftt'RF 2.

Let p (b) be the amount of processing time completed on job k before dand let pk(a) be the
amount of processing time completed after d. Clearly, either IB I< I A I or IBI > IA I (IBI
denotes the cardinality of B). First suppose 1BI < IA I. Then all jobs can be shifted to an ear-
lier completion time such that Ck = d. The change in Z due to the shift is

IB p (a) - IA Ip(a) - pk(a) < 0.

If 1,1 > IA I all jobs can be shifted to a later completion time such that Ck - d + P*. The
change in Z due to this shift is

IA Ipk(b) - 1B1p(b) + pk(b) 0.

In either event the objective function cannot increase by such a shift.

Because of the above two observations and because preemption is not allowed, it is
sufficient to confine the search for an optimal schedule to the set of permutation schedules
formed by the concatenation of B to A. By specifying such a permutation, it is understood that
no idle time shall appear between jobs and that the last job in B will be completed at time
t=d.

Observe that the following properties characterize the schedule S produced by SCHED:

I. The jobs in B are sequenced by longest processing time first (LPT),
the jobs in A are sequenced by shortest processing time first (SPT);

2. lfniseven IBI- JAI,
if nisodd 81- JAI + I;

3. There is a one-to-one mapping of the jobs in A into the jobs in B such that

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 4, DECEMBER 1981



MINIMIZING DEVIATION OF JOB COMPLETION TIMES 647

k E A - j E B -A pk < pJ.

To prove that SCHED yields optimal solutions we must show that the above properties
are both necessary and sufficient for a schedule to be optimal. We begin with the condition of
necessity by assuming that some schedule S* with these properties is not optimal. Then it must
be that another schedule S ;d S, is optimal. Note that because there may be jobs with identical
processing times there may be many schedules satisfying properties 1, 2, and 3 that have the
same value for Z. S is none of these sequences. Then for S ;d S* it must be that at least one
of the three properties is not met for S.

First consider property 1. Suppose for schedule S that B is not in LPT sequence or that A
is not in SPT sequence. Assume the former condition is true. The proof of the latter is simi-
lar. If B is not in LPT sequence then there exists two adjacent jobs j, k such that p < Pk (See
Figure 3).

C. Cj kI I

B d A
FIGURE 3.

Consider interchanging jobs j and k to form S'. Clearly, such an exchange does not affect the
penalty for any job other than j or k. The change in Z produced by such an exchange is

(2) Z'-Z - (d- C;) - (d- C1) + (d- Ck) - (d- Ck).

The first two terms of Equation 2 represent the change in penalty for job j ; the second two
terms are the change in penalty for job k. Substituting

C,= C C- Ck - p, and C, - Ck -pk yields
Z'- Z - p, - Pk < 0.

Thus, Z(S') < Z(S), contrary to the assumption that S is optimal.

Next, assume that S ;d S* because property 2 is not met for S. For this to be so, it must
be that either IBI < IAI or 1B1 > IAI + 1.

CASE 1: IBI < IA I

Let k be the smallest job in A. By property 1, k must be the first job in A. Form
schedule S' by removing k from A and making it the last job in B. The resulting change in Z is

(3) Z'- Z - kIBI -pkA I.
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The first term in Equation 3 is the increase in penalty for the jobs originally in B. The second

term is the decrease in penalty for the jobs originally in A. Without loss of generality assume
IBI = 1AI- 1. Then

Z' - Z -pk <0,

which is contrary to the assumption that S is optimal.

CASE 2: IBI > IA + 1

Let k be the smallest job in B. By property I, k must be the last job in B. Form schedule
S' by removing k from B and making it the first job in A. The resulting change to Z is

(4) Z'- Z = pkJ I - p(IBI - 1) + p.

The first term in Equation 4 is the increase in penalty for the jobs in A. The second term is the

decrease in penalty for all jobs in B other than k. The third term represents that net change to
job k. Since iBI > 1A I + l it follows that

Z' - 0.

Clearly, if Z'- Z < 0, then S cannot be optimal. If Z' - Z = 0, then it must be that
IBI = A I + 2, allowing S to be transformed into an equivalent schedule satisfying property 2.

Finally, consider property 3. Assume that S e S* because no mapping satisfying property
3 exists for S. Note that if S is optimal, properties 1 and 2 must hold. Attempt to construct a

mapping satisfying property 3 by the following procedure. Start with the largest (last) job in A
and match it to the largest (first) job in B. Continue with the second largest job and so on until

the next job k in A to be matched to j in B cannot be done because pk > pj. The attempt to

map jobs must fail in this fashion, otherwise there would be a mapping contrary to assumption.
Let BJ be the jobs that precede j and let AK be the jobs that follow k in S (see Figure 4).

Clearly IBJI = AK I. Now form S' by interchanging jobs j and k. This affects the penalty of j
and k and the jobs in BJ and AK, but no other jobs.

C. C
J1 4- X -01H

BJ j TT AKI

B d A
FIGURE 4.

Let x - d - C and y - Ck - p - d The change in penalty caused by forming S' is

(5) Z' - Z - IBJI(Pk - pj) + IAK I(pj - Pk) + (x - y - pk) + (y + Pj - x).
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The first term of Equation 5 is the change in penalty for the jobs in BJ. The second term is the
change for jobs in AK. The third term is the change to job k, and the fourth term is the change
to job j. Equation 5 simplifies to

Z'- Z - P,- Pk < 0,

which contradicts the assumption that S is optimal. This completes the arguments for the
necessity of properties 1-3. To show that the three properties are sufficient to define an optimal
schedule assume that S' exists which satisfies the three properties and

(6) Z(S') > Z(S)

where S is an optimal schedule. If S is optimal then it too must satisfy the three properties.
Now

Z(S') > Z(S) -o S' e S

but S' - S since the three properties are sufficient to define a permutation of the jobs. This
contradicts (6) and completes the proof.

SIMILARITY TO THE 2-MACHINE F PROBLEM

At first glance one might mistakenly believe that the problem defined here can be reduced
to the 2-machine F problem discussed by Baker [1, p. 118] among others (e.g., Conway,
Maxwell, and Miller [2, p. 741). By referring again to procedure SCHED and Figure 1 we can
see how such a reduction might be construed. We simply let B and A represent the two
machines and assume that the jobs assigned to these two machines are sequenced in SPT order
for each machine. The example job set shown in Figure 1 would then be sequenced as indi-
cated in Figure 5.

Machine A -J31 J
5 is

Machine B J4 1 1i J J2
4 11 23

time

FIGURE 5.

If the MAL problem presented here were equivalent to the 2-machine F problem then any
optimal solution to one would also be optimal for the other. This is not so and to see why con-
sider the example problem appearing in Baker [1, pp. 118-1191 and given below:

job j 1 2 3 4 5 6

pj 1 2 3 4 5 6
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As Baker points out, "nl! optimal solution to the Fproblem is (not to scale):

Machine I J

Machine 2

Let us assume a due date of d - 100. One could then "interpret" the above solution as either:

(a) 6 3 1 2 1 1 4 1 577
95 98 101 105 110

d

or

(b) 5 1 1 1 2 3 1 6
95 99 102 105 111

d

Case (a) yields MAL of 23/6. Case (b) yields MAL = 24/6. Procedure SCHED yields the
optimal schedule:

1_6 1 4 1 2 I 1 3 1 57
94 98 101 104 109

d

which has an MAL of 22/6. Clearly then an optimal solution to the F problem is not always an
optimal solution to the MAL problem. Therefore, the two problems are different. The reason
for this lies in the fact that property 3 (given above) is necessary for an optimal solution to the
MAL problem but not necessary for the F problem.

SUMMARY

What we have addressed here are problems in which penalties for jobs are incurred both
when they are completed early or late. The critical condition that d > MS is sufficient to
ensure that procedure SCHED does not require jobs to be processed prior to t - 0. It has been
shown that under this assumption the optimal schedule must be V-shaped. Whereas procedure
SCHED provides optimal solutions under the noted conditions, future research must be
directed toward problemq in which d is not restricted and to the case of multiple due dates.
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A MATHEMATICAL MODEL FOR
GENERATING THE AREA OF A DRAINAGE BASIN

R. T. Robinson

Engineer Studies Center
Corps of Engineers

Washington, DC

ABSTRACT

This paper presents a mathematical model that yields the area drained by a
naturally-occurring network of streams. The model is based on empirically
derived relationships in the field of quantitative geomorphology and an assump-
tion concerning the probabilistic nature of stream system formation. A wide
range of model solutions is indicated, and the model is validated by comparing
the results to statistics from actual stream systems.

INTRODUCTION

The areas drained by stream systems are necessary factors in the solution of many prob-
lems in engineering design and military planning. Securing such areas using topographic maps,
aerial photographs, or actual measurement is often fraught with difficulties related to such fac-
tors as time, money, and access. This paper presents a model that was developed to satisfy
such data requirements analytically through the quantification of a few simple parameters in the
geographic areas of interest. The model is based on empirically derived relationships in the
field of quantitative geomorphology and assumptions concerning the probabilistic nature of
stream system formation. Model solutions are indicated for stream systems of various sizes and
model validity is examined using statistics from actual stream systems.

BACKGROUND

The study of the formation of drainage patterns from a stochastic viewpoint had an early
beginning. In 1802. John Playfair, Professor of Natural Philosophy, University of Edinburgh,
wrote Illustrations of the Hunonian Theory of the Earth. The following passage has been called
Playfair's Law:

'Every river appears to consist of a main trunk, fed from a variety of
branches, each running in a valley proportioned to its size, and all of
them together forming a system of valleys, communicating with one
another, and having such a nice adjustment of their declivities that
none of them join the principal valley either on too high or too low a
ltvel, a circumstance which would be infinitely improbably if each of
these valleys were not the work of the stream which flows in it."
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Playfair obviously recognized the systematic aspects of a natural drainage system; however, lit-
tle was done to quantify these aspects prior to the work of R. E. Horton in 1945 [3]. Horton's
bifurcation and stream length ratios are particularly important to this model and to most of the
work that has been accomplished in the field since Horton's publication.

In recent years, probability theory has been used in an attempt to explain and quantify
various aspects of naturally occurring drainage networks. Prominent among the works in this
area have been those by Hack [21, Leopold and Langbein [41 and Schenck [81. The general
theory basic to these works is that the formation of drainage networks can be explained by the
laws of probability and that, free of constraints, streams tend to occur in a random fashion.
Leopold and Langbein viewed the laws of Horton as representing the most probable state in a
stochastically formed network and used a random walk model to show that the laws of Horton
did, in fact, hold. Schenck used a similar model to substantiate the empirical work of Gray [1].

The first known attempt at constructing a predictive model was made by Mayer [5). The
Mayer model was an attempt to use the work of the several previous authors in the field to con-
struct drainage basin relationships that, with quantification of a few parameters, could be used
to predict the numbers, orders, and hydrologic characteristics of streams within a naturally
occurring drainage network. The model described in this paper has some of the characteristics
of the Mayer model.

BASIC CONCEPTS

Basic to the model is the concept of a drainage basin. Loosely defined, a drainage basin is
the total area drained by a stream and its tributaries. Every drainage basin is circumscribed by a
drainage divide that separates the precipitation that falls into that basin from the precipitation
that falls into contiguous basins. Drainage basin areas of the same order are nonoverlapping;
and the total area drained by all basins exhausts the surface of the earth's landmass. These
concepts have long been used in the study of stream morphology and are basic to the relation-
ships described in this paper.

Also basic to the model is the Horton method of stream ordering. This method traces
each stream to its drainage divide and considers that each stream extends from its mouth to pri-
mary headwater. The method is illustrated in Figure 1.

BASIC RELATIONSHIPS

The model presented in this paper draws heavily on four empirically established
relationships-two derived by Horton [3], one derived by Schumm [91, and one derived from
works by Hack (21. Although the relationships are least-squares approximations, they represent
data collected over wide geographic areas, and the degrees of fit were generally quite good.

The Horton relationships may be stated as follows:

(I) I1- Ilat- | ,

(2) n-j

where

I, - mean length of an h-order stream,
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4

2
2

3 2 3 2

2 2

2

3

2

FIGURE I. Horton definition of stream order (redrawn from

Shreve 1101). Order indicated by number near upstream end

of respective streams. Unnumbered streams are first order.

n, - number of Ath-order streams in an Nth-order drainage basin,

a - stream length ratio, a constant factor derived from empirical evidence by which
the mean length of an Ah-order stream exceeds the mean length of an (i - l)st-
order stream,

and

/3 - bifurcation ratio, a constant factor derived from empirical evidence by which the
number of (i - 1)st-order streams exceeds the number of Ah-order streams in an
Nth-order drainage basin.

In examining collections of data, Horton and others found that the values observed for a and /3
varied somewhat from basin to basin, depending on such factors as gradient, soil composition,
rainfall, etc., but that the values recorded in mature basins tended to cluster around 2.68 and 4,
respectively. Consequently, these values are referred to throughout this paper as the equili-
brium values for these basic parameters.

The Schumm relationship may be stated as follows:

(3) AN-j - AN Xs,
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656 R. T. ROBINSON

where

A, - area drained by all ith-order basins in an Nth-order parent basin,

and

X - basin area ratio, a constant factor by which the total area drained by all basins of
Ah-order exceeds the total area drained by all basins of ( - l)st-order in an Nth-
order drainage basin.

The Hack relationship may be stated as follows:

(4) f - ffa.

where

i- area drained by overland flow occurring directly into an Rh-order stream,

and a is the stream length ratio defined by Horton. Note that the area drained by overland flow
is that area for which the sheet flow is insufficient in length to sustain a first-order stream; e.g.,
the area immediately adjacent to the banks of a stream.

Using the Hack and Schumm relationships together, we can also form the useful relation-
ship:

(5) FN = (X ,//)N-IAN,

where

FN = total area drained by overland flow occurring directly into the Nth-order stream.

THE JUMPING PROCESS

A phenomenon of particular importance in describing the behavior of streams is the pro-
cess of "jumping," a phenomenon often ignored in constructing drainage system models.
Specifically, a stream of order i is said to jump if at its mouth it intersects a stream of order
i + 2 or greater; i.e., the stream does not bifurcate with the next higher order stream but jumps
at least one order in the hierarchy. To describe this process analytically, the following assump-
tion is made:

ASSUMPTION: Within an Nth order parent basin, streams of order i bifurcate with
streams of order i + I and greater in direct proportion to the relative total stream length of the
recipient streams. Based on this assumption, the proportion of streams in an Nth-order parent
basin that jump to the order N stream may be derived as follows:

First, the number of Rth-order streams that bifurcate with (i + l)st-order streams may be
written as

N

n - n,,+t'+t/ Y. n,.
jNi+C
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Dividing this quantity by n, and taking its complement yields the proportion of ith-order
streams that bifurcates with all orders greater than i + I (i.e., the proportion that jumps). This
proportion, denoted Pi, may be written as

N
P = 1- n,+l,,+/ nji

j-i+ I

which, using equations (1) and (2), sums to

p , .. , ( I - -i _ a N - -i) / ,8 N -$ a_ oN -,) .

Next, of the Rth-order streams that jump, the proportion that jumps specifically to the
parent stream of order N > i + 2, denoted Pi.N, may be written as

N

PN - nNIN/ E .i jlj,
j-#+2

which, using equations (1) and (2), sums to

Pi.= N-i-2 (p _ a)/(IN--I _ aN-i-I).

Finally, the proportion of all Rh-order streams that jumps to the order N stream may be
expressed as

(6) PiP.N = ai -' (,8 - a)/(,8N -' a'-').

Solutions of this equation for parent basins of orders 3 through 9 and equilibrium a, 63 values
are set forth in Table 1.

TABLE I - Proportion of Streams in a Drainage
Basin That Jump to Parent Stream

Order of Order of Parent Stream (N)
Jumping

Stream (i) 3 4 5 6 7 8 9
1 .401 .212 .124 .077 .049 .032 .021
2 0 .401 .212 .124 .077 .049 .032
2 0 0 .401 .212 .124 .077 .049
4 0 0 0 .401 .212 .124 .077
5 0 0 0 0 .401 .212 .124
6 0 0 0 0 0 .401 .212
7 0 0 0 0 0 0 .401

NOTE: Values were computed using a - 2.68 and 19 - 4, the equilibrium values.

THE FUNDAMENTAL RELATIONSHIP

In examining collections of field data, Hack [2) found that the area of a basin could be
related to its length and shape by the power function

where i represents the mean length of th-order streams, a, the mean area of Rh-order basins, h

a parameter indicating the shape of the mean basin, and k a constant factor by which the length

VOL. 28, NO. 4, DECEMBER 1931 NAVAL RESEARCH LOGISTICS QUARTERLY



658 R T. ROBINSON

of the ith-order stream exceeds the length of the th-order basin. Assuming that h and k are
constant in relatively homogeneous basins of adjacent order, we can write

a [,l,-iP

which, multiplying both sides by I/, reduces to the fundamental relationship

(7) ( - Aa1"'.

It can be shown that h is logically bounded by 0.5 K< h < 1.0. However, Hack 12], Mayer [5],
and others found that values not exceeding 0.6 were typical for h in relatively mature basins.

AN ADMISSABLE REGION FOR MODEL PARAMETERS

The area of a parent basin, denoted A,v, may be written as the sum of three components:
the area drained by included basins of order N - I that bifurcate directly with the order N
stream; the area drained by the basins of orders N - 2 and lower that jump directly to the
order N stream; and the area drained by overland flow occurring directly into the order N
stream. Symbolicaliy, this relationship may be written as

AN = AN-i + PN-2PN-2.NAN-2 + "'" + PIPI.vA I + f%,

which, using equations (3), (5), and (6), becomes

AN ~N- + ANA/a1) 1, AAN + AN 1 1 al)
10 -2 I - - J

and further reduces to the basic parametric relationship

(8) T. I _ )0.

This equation defines the equilibrium behavior of X, the basin area ratio, within a relatively
homogeneous drainage basin. The bounds on X are determined by the bounds on P,, the pro-
portion of streams that jump. Hence, A assumes its minimum value when P, is maximum, i.e.,
P, - 1, all i < N, and A assumes its maximum value when P, - 0, all i < N. With Pi = 0, all
i < N, we obtain

(9) A + (Aa/)N - - I= 0.

which defines the upper bound on the admissable region for the a,. 3 pairs. With P, = 1, all
i < N, we obtain

(10) If I N-1 I L/pi-. + A + (Aa/)Ni - 1 _ 0,
.j-2 Ut -

which defines the lower bound on the admissable region for the a, 3 pairs. Using equation (7)
to define the interdependence of the parameters, we can further write equations (8), (9) and
(10) as follows:

1P2 i- - +2 i-0

(1?) 6a - 1/h + a(ih ( - i)(N - ) - I - 0.
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(13) C, A i J + a 1  + 1 -!-0.
.j-2

Solutions of equations (11), (12) and (13) yield the admissable region for the a.3 pairs for
each parent basin and specified value for h, the basin shape parameter. The equations may be
solved using such techniques as the Newton-Raphson method of successive approximation [7].
Solutions for N - 9 and h - 0.55 are illustrated in Figure 2.

12-

10 N10

h -0.55

-6

4 ----------- ' --------- --- - ----- wSO

2 II

0-

0 1 2 2.6 4
STREAM LENGTH RATIO (a)

FIGURE 2. Admissable region for a. jS pairs (the middle curve

is the locus of equilibrium values)

BASIN AREA MODEL

As illustrated in the previous section, the area drained by a parent basin may be parti-
tioned into three components. The recursive nature of this relationship is developed in Table 2
for parent basins of successively higher order. The development in Table 2 suggests that the
area of an Nth-order, relatively homogeneous basin may be expressed in recursive form as fol-
lows:

N N-2 N

(14) AN - w N-'f + 6N N. 1 3 -Jj

i-I i-I j-i+
2

Using equation (4), the Hack relationship for overland flow areas, the first term of equation
(14) may be summed mathematically and expressed as:
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TABLE 2 - Recursive Relationship ol Included Basin Areas

Parent Area of Parent Basin by Component

Basin

Order Orthodox Basins Jumping Overland Total Area Drained

(., Basins Flow

00 .1

2 131  0 2 1
+ 12

31211 +13.f .f3 21, +1/12 + I. + Jj 3

J 33fl1 + + f3 + ,3J1  J 4 +J. 4  34 3'I + 13.1 + 31 + .14 + 0]1 + JI4 + J24

, I ,,, %-1 3 I %- 2 5 2 .

13 .r, + + , % 1
-I- -I - 2

(15) J '.'J' = .l'I(13 ' ."Tl(1-3-
,=I

It may be observed that equation (15) is the fundamental Hack equation for an Nth-order basin
area [2]. Hack did not consider the process of jumping in his development which made his area
equation deficient by the jumping component. The second term of equation (14) may be
expanded by considering the following development.

From the jumping process described in a previous section, the total area drained by a
stream of order k > I that jumps to a parent stream of order I >, k + 2 may be written as

ik. = AA k=.1.
That is, in any parent basin of order I there are n streams of order k, each of which has area Ak
and a proportion equal to P.Pk,i that bifurcates directly with (jumps to) the order I stream.
Therefore, JA. is the total area drained by those kth-order streams that bifurcate directly with
the parent (order I) stream. Using equation (2) for n, and equations (14) and (15) for Ak, this
relationship may be written in recursive form as

k-2 A
(16) J.I = PAPA., '- .(13' - ak)/((J - a) + I . 3 A-,.and/) k ,- 1-,+2

wherek > land> k+2. k>2

Thus, the total area drained by an Nth-order basin may be written as

N-2 N
(17) A= .f,(0.3 - a'v)/(ft - a) + Y Y jN-. J

k-I 1-k+2
N> 2
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where Jk.1 is given by equation (16). Solutions of equation (17) for a range of k. 13 values are
set forth in Table 3. Table 3 also reflects the implied values for X, the basin area ratio, for
adjacent equilibrium basins.

TABLE 3 - Areas Drained by' Parent Basins/br a Range of Paraneter I ' s

Parent Equilibrium Basin Area
Stream (- 10% 1 + 10% Values /3 + 10% /3- 10% Ratio for
Order Equilibrium

(N) a = 2.41 a -2.95 a = 2.68 a = 2.68 (k 2.68 Values (W)
,3=4 /3=4 /3=4 /3=4.4 /3=3.6

1 1.0 1.0 1,0 1.0 1.0 -
2 6.4 7.0 6.7 7.1 6.3 .60
3 37.5 43.3 40.3 45.7 35.3 .67
4 214.2 261.3 237.0 288.0 192.4 .68
5 1217.4 1559.3 1380.7 1804.9 1035.7 .69
6 7048.6 9459.5 8189.7 11512.1 5673.6 .67
7 42266.4 59456.1 50340.5 75911 7 32271.8 .65
8 263222.9 388819.2 321759.2 518871.1 191464.6 .63
9 1696276.2 2635843.5 2130301.0 3663590.5 1180099.3 .60

NOTE: Area values are in terms of f,, the mean area drained by lst-order streams, expressed in square miles.

The a, /3 values reflected in Table 3 were chosen to examine the sensitivity of the area
model to these basic parameters. The values all lie within the admissable region depicted in
Figure 2. The results show that the model is very sensitive to both a and /3, but is most sensi-
tive to /3. For example, for N = 9, a 10 percent increase in 3 causes a 72 percent increase in
basin area, whereas a 10 percent increase in a causes only a 24 percent increase in basin area.
Sensitivity to both parameters also tends to increase as N increases. The sensitivity results sug-
gest the importance of quantifying the model parameters in the area of interest, especially if
there is reason to suspect the presence of nonequilibrium behavior.

The values for the basin area ratio, A, in Table 3 were computed using equation (3). This
equation may be written as AA,v - Av-I, where A,_ t is defined to be the total area drained by
all (N - 1)st-order streams in an Nth-order parent basin. However, the areas given in Table 3
are for a single basin of each order. Therefore, in terms of the values in Table 3 we can write

A - /3AN-i, which implies that A differs from unity by the sum of two areas: the area
drained by overland flow into the Nth-order steam and the area drained by those streams of
orders N - 2 and lower that jump to the Nth-order stream. Thus, A can be interpreted as the
percent of the area drained by an Nth-order stream that is due to included basins of (N - I)st-
order. The balance (I - A) is the proportion that is drained by overland flow into the Nth-
order stream and the streams of order N - 2 and lower that jump directly to the Nth-order
stream and are not included in (N - l)st-order basins.

MODEL VALIDATION

The acid test of a model is the extent to which the model output correlates with observed
data. In this case, comparison data are available for several of the major stream systems of the
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world. (See, ror example, Horton 13] and Morisawa [1). Table 4 lists relevant data for four of
the world's major river systems and one smaller tributary of the Delaware River.I TABLE 4 - Comparison of Model Results with Actual River Systems

River Area Area Implied Mean Area
Length Drained Computed Drained Drained by First

River (Actual) (Actual) Order* (Model) Order Streams*
Syte (ils) (s mle) (A)s mls (sq miles)

System ~~~~ ~ ~ ( (mls I ies s ie)V
Delaware, 5/785 5 1,381 A ~ .57
East Branch
Tennessee 900 40,600 7 50,341 Ai .81
Arkansas 1450 160,500 8 321,759fA .50
Mississippi 3892 1,243,700 9 2,130,301 fA .58
Nile 4160 1,150,000 9 2,130,301 f, .54

*See text for discussion.

The orders of the parent streams in Table 4 were computed by setting i - N in equation
(1) and writing the equation as follows:

N - log(/N/l 1)/loga + 1.

The values for N were then computed using a - 2.68, its equilibrium value, and 11 - 1. While
11 tends to vary between about 0.5 and 1.5 miles depending on how well an area drains, the
values tend to cluster about unity in mature basins. (See, for example, Hack 12] and Horton
[31.) It may also be observed that both the areas drained and the lengths of the parent streams
tend to vary somewhat within basin order since the basin orders are stated as integers and tend
to increase in proportion to the logarithm of the areas drained.

A measure of the consistency with which the model estimates the actual areas is given in
Table 4 by the implied mean values for the areas drained by first-order streams, fl. Examina-
tions of field data suggest that this value varies in nature between about 0.1 and 1.0 square
miles, but that values of 0.5 to 0.8 are typical for mature basins. (See, for example, Hack [21,
Horton [31, and Morisawa [61.) Thus, the model, solved for equilibrium parameter values,
appears to produce very good approximations of actual basin area size. Better estimates could
be expected if the parameters were quantified in the specific areas of interest, however, the
effort required to obtain such estimates is often substantial.

A final measure that tends to validate the model is given by the X values in Table 3. This
can be seen by examining the relationship implied by the model results between P and the
basin shape parameter, h. Since the area model, equation (17), is not a function of h, the k
values in Table 3 were generated independent of basin shape and thus could be considered to
represent the equilibrium condition with respect to h. Equation (7), which relates A to h, can
be written as:

h - - loga/log(k/g).

By substituting the high and low X values from Table 3 into this equation and using equilibrium
a and P3 values, we obtain an implied range for h of 0.52 to 0.56 which correlates closely with
values observed by Hack [21, Mayer [51, and others for the basin shape parameter, i.e., a basin
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that is slightly elongated in the downstream direction. It also correlates closely with the results
plotted in Figure 2 which show that the equlibrium solution is attained when a = 2.68, 3 = 4
and it = 0.55, and tends to validate the assumption made in deriving equation (7) that h is rela-
tively constant in basins of adjacent order. TLh-refore, the model exhibits the desired balance
and, since the results correspond closely to observed data, also tends to validate the underlying
relationships empirically derived by Horton, Hack, and Schumm.

SUMMARY

The model described in this paper proved quite useful in estimating stream crossing
requirements for military operations. Together with a companion model, the area equation was
used to estimate the numbers, sizes, and interfluvial distances of streams in areas of interest.
Although the model behaves quite well using equilibrium values for the model parameters,
model behavior is enhanced by quantifying the parameters in the specific areas of interest.
Recommendations to overprint these data on standard topographic maps were an outgrowth of
this modeling effort.
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A NOTE ON THE FLOW-SHOP PROBLEM WITHOUT
INTERRUPTIONS IN JOB PROCESSING

Wlodzimierz Szwarc

School of Business Administration
University of Wisconsin-Milwaukee

Milwaukee, Wisconsin

ABSTRACT

This paper deals with a flow-shop problem where the n jobs are being pro-
cessed uninterrupted by m machines, A comprehensive theory based on "an
earliest starting time of a job" concept produced the most efficient solution
method for a variety of optimization criteria. The paper also rectifies several
known results in this area.

1. INTRODUCTION

Consider a flow shop problem (later called UFP) where n jobs are being processed without
interruptions by m machines in the same technological order. This model was formulated and
solved in 1972 by S. S. Reddi and C. V. Ramamoorthy [41 and by D. A. Wismer 161. J. N. D.
Gupta [I] generalized the method of [41 in 1976 providing a new theoretical derivation. The
theory of [61 and [1], however, is more complicated than that of the original flowshop problem.
This paper offers another framework utilizing the "earliest time when a job starts being pro-
cessed" concept which makes the theory of the UFP simple. It shows that the approach based
on the difference of earliest starting times of two consecutive jobs (see formula (5)) leads to
the most efficient method for a variety of objective functions. The paper also rectifies several
results and conclusions of the existing literature.

2. THE MODEL

We will adopt the following notations:

M, - s-th machine, s = 1,2 .... ,

r-jobr, r- 1,2 ..... n,
t, - processing time of job r on M, t, > 0,

T(P) - completion time of permutation P = P0p2. p of numbers 1,2. n,
ti- earliest time when M1 starts processing job p, of sequence P.

For simplicity assume t = tj and t, - 0. Then for each k - 1, 2. m

k-I
(I),j- tj + t,,

s-I
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and

(2) T(P) = t,, + 1, tp,.
s-|

Since t,s > 0, one can prove the following theorem of [1].

THEOREM 1: For a schedule to be feasible it is necessary that all machines process the
jobs in the same order.

PROOF: Suppose machines Mk and Mk+l do not process the jobs in the same order. One
can assume that job a follows immediately job b on Mk+l, while a precedes b on Mk. Since b is
being operated without interruptions the processing of a will stop for at least tbk + tbk+l > 0
which violates the feasibility of the schedule, Qed.

Theorem 1 of [11 where t,, > 0 is not true, however, as the authors of [31 have shown (by
a counterexample).* According to (1) and (2) the tk, and T(P) can be calculated given the
appropriate tj. Define
(3) d(p, pi+i) - t=+l- ti.

Then
j-I j-1

(4) tj = t, + d(p, pi+,) = d(p1, pi+,).
I-I I-1

To find d(p, pi+,) we need the following theorem. Consider an arbitrary sequence P
where a = pi, b = pi+l. Assume that the processing of job a starts at the earliest time ti.

THEOREM 2:

(5) d(a,b)= max t - ytbI.

s l s-I J

PROOF: The problem of jobs a and b being processed uninterrupted on machines Ml,
M2 ... .Mm can be viewed as a classical two-machine flow-shop model where "machines" a
and b handle sequence MM 2 ... Mm of "items" M, in the same order a,b and where pro-
cessing on the first "machine" a goes on uninterrupted. According to [21 the minimum waiting
time of "machine" b that operates sequence MM 2 ..... Mm is equal to the right hand side of
(5). The processing on b will go on uninterrupted once b starts operating at t, + d(ab) which
is its earlier starting time t,+n once d(a,b) is minimum.

Observe that (5) holds for every sequence where job b immediately follows job a.

*The proof of this theorem (see 1Il. p. 236) is deficient due to the following gaps: a) it overlooked the fact that the
waiting time for job a may be in zero whenever tb,! - 0 even though tbm 2 > 0 (and not > rb. I + 1b, 2) as stated Ill

and b) different processing orders of mI and m 2 (say 12345 and 51234) do not necessarily assure an existence of a
schedule where a immediately follows b on m2 and b immediately follows a on rnn.
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According to (2) and (4),

T (P) - t,, + t,.,- d(p,, pi,) + I ,.

Hence, the UFP is equivalent to an n + 1 -city traveling salesman problem (TSP) where the dis-
tance cost matrix C - (Cab), a,b - 0, 1. n is defined by

CObO0, V b *0,
C~b-d (a. b) V a, b *0, a ;db,

(6)
CaO I as, V aO; ,

S-I

Caa 0, V a.

P - PI.P2. p. is an optimal solution of the UFP if and only if 0*PI*P2. P., 0 is

an optimal tour of the TSP.

3. IDLE TIME APPROACHES

Let Ik(a,b) be the idle time between two consecutive jobs a - p, and b - p,,, on Mk.

Then Ik - tb - t '-ak or (see () -

(7) Ik (a, b) - I1I(a, b) + I b - t,
S-I s-2

Due to (5)

(8) 11,(a,b) - max: as Y 'I:bs,1
While Reddi and Ramamoorthy [41 based their approach on 11(a, b) using (8), Gupta [1] pre-

ferred Ik(a,b), k > 2, as defined by (7) and (8). To minimize T(P)* they solved an
equivalent TSP where formula (6) for distance cost matrices C' of [41 and C "of [11I reads"

I, M

(6) C., - ,1 E i.cab - 11 (a,b), c.'o - t.,, C~a -
s-I s-2

(6" c~Ib - , cij C' -m(a, b), c 'o - 0, c~a -

*Gupta minimized f (P) - T(P) - ±t,~ - ' + 1.p p,.,,) - T(P) - Constant while Keddi-Ramamoorthy

minimized T(P) - ± P + + i-Ii-

**Notice that C'-C + + v), C"- C +t+ v;) where Cis defined by (6) and

.4-~~~ a i,4 u6 -, 1 via -A ~b 0 . 0 b oC n,

U01-0V;- 0. u- - ± I( ,is-~ k b ( I

S-I S-i
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4. OTHER OPTIMIZATION CRITERIA

Let WA(P) be the waiting time of machine M, (counted from t = 0) that processes
sequence P. Then

n - I

WA(P) = tA + 'AY,, p,..i.

Gupta [!1 generalized the model of [4] using the following objective function.

(9) f(P)= Z k WA(P).
A-2

Notice that for w, = I, and wA = 0 otherwise, f(P) and T(P) differ by a constant (see first
footnote on page 667).

One should point out that the summation in (9) must include term w K1'(P) since
W,(P) is not fixed, contrary to what is claimed (see [I], p. 237). To show that W1,(P) depends
on Pconsider a 2-job, 2 machine UFP where t, 1, t12 = 5, 121 = 6, 122 = 3.

Then Wt(1,2) = 0 while W,(21) = 2.

Another objective function is

nI? In Inl fl(10) I(P) = .wk(t4- A4) = wk  t W + , 'k(P,. P,*)
kIl n-I tI 1 k-I IO

which a weighted sum of time involvement of al machines. The first term of (10) being con-
stant can be dropped without missing optimality. Each of these problems can be easily
transformed into an equivalent TSP (using formulas similar to (11) of [I]. J. M. Van Deman
and K. R. Baker [5] solved the USP with a mean flow time criterion. Since the completion time

m
of job p on Mm, t7' + t

pjrm, is equal to t, + 7 t,,, (see (i)), the objective function is
S-I

n tj + tsI = -7 t, + Constant../-I [ s-I J / jfi

Hence, one can instead minimize (see also (4))

n n
(11) z(P) = f " d(p,, pi+,).

,-I i-I i-I

5. CONCLUSION

As we have learned, any objective function of the UFP can be expressed in terms of
either d(a, b), i(a, b), or Ik(a, b), as defined by (5), (8), and (7). Those formulas clearly
indicate that d(a, b) requires minimal computational effort, while 11(a, b) is second best.

One should obviously use d(a, b) when dealing with the mean flow-time criterion (see
(I)).
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In all other cases, the efficiency of an approach should be measured in terms of time
necessary to calculate the travel cost matrix of the respective TSP (see [1], p. 241). If the com-
pletion time T(P) is being minimized, then according to (6), (6'), and (6") the d(a, b)
approach has an advantage over the remaining approaches since (5) is to be used n(n - 1)
times. The efficiency of the d(a. b) approach diminishes, however, once Wismer's algorithm
[61 is applied to determine the d(a, b). Gupta (1] has shown that the approach based on
Im(a, b) is more efficient than Wismer's method.*

Suppose the objective function explicitly depends on l(a, b) as in Section 4. Taking
advantage of (1) we can express IA(a. b) = t - - tak as follows:

(7) k(,. b) = d(a, b) + I t, - : 1,,.
s-I s-I

Due to (5), formula (7') is computationally more efficient than t7).
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*One can considerably improve the efficiency and clarity of Wismer's algorithm by reformulating its pivotal steps 3 and
4 as follows:

a. Find Ell and T,1I from EA = T,k-1 + ,r, and Tk+ - r + rk.

b. Is Ek > ' I* If not. set d - T!I- E T,* - T,* +' + go to 5.

If it is, set dk  
- 0 and T" - Ek; go to 5.

This improvement still falls behind formula (5) in terms of efficiency,

VOL. 28, NO. 4, DECEMBER 1981 NAVAL RESEARCH LOGISTICS QUARTERLY



A NOTE ON INTEGER SOLUTIONS TO LINEAR
FRACTIONAL INTERVAL PROGRAMMING PROBLEMS

BY A BRANCH & BOUND TECHNIQUE

S. C. Agrawal

Department of Mathematics
Deva Nagri Post-Graduate College

Meerut, India

Marn Chand

Department of Mathematics
Kisan Degree College, Simbhaoli

Ghaziabad, India

ABSTRACT

This paper provides a method for solving linear fractional interval program-
ming problems in integers with the help of a branch and bound technique.

1. INTRODUCTION

This paper is concerned with describing a systematic procedure for solving a linear frac-
tional interval programming problem with the additional condition that the variables are
integers.

The problem is as follows:

(1) maximize Z - I c'x + co  C(x)

d'x+ddo D W '
subject to b- < Ax K, b+,

x has integral components.

This is known as a fractional interval integer programming problem (FIIP). A linear frac-
tional interval programming problem, abbreviated (FIP), is defined as:

(2) maximize d'x + do D(x) '

subject to b- < Ax < b+ ,

where ' co, d', do, b-, b+ and A are given.

of The problem was introduced in [41 and solved explicitly in the feasible bounded case with

A of full row rank, see also [2], [6].
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The linear fractional programming problem in all generality was reduced by Charnes and
Cooper [3] to, at most, a pair of ordinary linear programming problems, by adjoining a specified
constraint to the given set of constraints.

A primal algorithm is given by A. Charnes, D. Granot and F. Granot (5] for solving the
(FIP) problem directly and this utilizes the special structure of the interval constraints.

The purpose of this paper is to obtain an integer solution to the (FIP) problem and pro-

duces, after a finite number of iterations, an optimal integer solution to (FLIP).

2. PRELIMINARY RESULTS

Consider the fractional programming problem (FIP):

cIx + Co C(x)
maximize d + d (x) }
subject to b- < Ax < b+.

For the following, let b-, b+ E Rm; c', d', x E R"; co, do E R and A be a real mxn
matrix. N(A) denotes the null space of A, R (A) the range space of A, I the usual orthogonal-
ity relation in R", and Rh denotes the set of all mxn matrices of rank r.

To exclude trivial cases, the following assumptions are made:

ASSUMPTION 1: (FIP) is feasible, i.e.,

S - Ix E R"; b- < Ax < b+) d0.

ASSUMPTION 2: D(x): - dtx + do > 0 over S, the feasible region.

ASSUMPTION 3: There exists no X E R such that

D(x) -XC(x):-Ax(cx + cd for all x E S.

ASSUMPTION 4: C1 N(A) and dIN(A), since a feasible (FIP) is unbounded if either

c 9 N(A), or d e N(A) [4].

LEMMA 1: Let A E R M and D E R be such that

(3) R (D') - R (A)

then AD' E R", , i.e., AD' is of full column rank (9].

LEMMA 2 [5]: Let D be as in lemma 1 and suppose that (FIP) is given with A ER '

and cIN(A ), d.1 N(A ). Then, the optimal solution of (FIP) is:

(4) D'y" + (N(A))
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where y" is any optimal solution of

(5) maximize c'D'y + co
d'Dly + do

subject to b- < A D'v < b+.

PROOF: Since R(A') N(A}Y and since c E N(A)Y, d E N(A$Y, it follows that the
optimal solution to (FIP) is of the form

(6) x* + N(A).

Where x* is an optimal solution to

CIX + Co(7) maximize d'x +d o

subject to b- < Ax < b ,

x E R(A).

But, since R (A') = R (D and x E R (A') can be equivalently written as:

x= Dy, y E Rr.

Substituting x - Dy in (7) results in the equivalent problem, which completes the proof.

Without loss of generality it can be assumed, that there exists an x E S such that
D(x) > 0.

Following Martos 181, every feasible point x to (FIP) is classified according to the table
below:

x Type 1 Type 2

"good" point D(x) > 0 D(x) = 0, C(x) < 0
"bad" point D(x) < 0 D(x) = 0, C(x) > 0
"singular" point D(x) - 0 = C(x)

A complete analysis of (FIP) in all generality and generation of an optimal solution to

(FIP), if one exists, is given by Charnes and others [5].

3. ALGORITHM

Let u's assume that (FIP), given in (2), is feasible, and let cl N (A), dl N (A) and A be
of full column rank representation (see Lemma 2) and D(x) > 0 on S.

From Martos [81, we recall:

THEOREM 1: If S 0 and the above assumptions are satisfied, then the fractional
function attains a finite maximum on S, which is taken on at least one extreme point.
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Let x* be a feasible extreme point of S, and B a basis for the rows of A which includes all
the rows of the linearly independent constraints satisfied as equalities at x*, and N be the com-
pletion of B to A. Let bi, bj, b+, b, be the partitions of the vectors b- and b' which
correspond to the partition of A to B and N, respectively.

(8) Let y= Bx*,

and

(9) z,(y) -(cB-I), (do + d'B-1y) = (dB-'), (co + c'B-y)

LEMMA 3: x* is an optimal solution to (FIP) if

z,(y*) K< 0 whenever y' = bn
(10) z(y ° ) > 0 whenevery*= b, J5].

An algorithm given in [5] shows that, after a known number of iterations, an extreme
point solution is obtained. If this extreme point satisfies the optimality criterion (10), then the
algorithm terminates with an optimal solution to (FIP) given by x0P' = B-1y. If, however, the
optimality criterion is not satisfied, the algorithm proceeds along adjacent extreme points while
improving the value of the objective function until an optimal extreme point to (FIP) is pro-
duced.

We solve (2) as in [5) and thus we obtain the maximum value of the objective function as
A, say. If all the components of x are also all integers, then this is obviously the required
optimum solution. If the components of x are not all integers, we obtain one after another
more restrictive upper bounds A1, A2 . . . . . . . . A, in the same way as Land and Doig [71 has
done for linear objective functions.

It is possible to transfer the problem (1) to an equivalent linear programming problem
and then to apply existing methods for solving the equivalent problem in integers. However,
since such a transformation will increase the effective size of the problem and will destroy the
special structure of the constraints, we apply Land and Doig method to problem (1) to obtain
an integer solution. It maintains the original two-sided constraints structure and takes advan-
tage of this special structure during the solution procedure and thus will be more efficient for
problems which occur in (IP) form rather than the equivalent (LP) codes.

Let the value of any component of x, say x,,, be a (nonintegral) for the maximum value
A of the objective function. Now, x. is forced to take an integral value and hence is decreased
to at least a0 or increased to at least a0 + 1, where a0 denotes the largest integer less than or
equal to a.

We now solve the fractional interval programming problems by substituting xP = a0, and
then we solve it by substituting xp - a0 + 1 by the same method (51. Let the two values of the
objective function thus obtained be A' and A ", respectively. However, if one of the above two
problems, say the fractional interval program with the condition x, = a0 is not feasible, A' does
not exist. It implies that the value of x, which only satisfies x,, > a0 + 1, need be considered
in future discussion. If neither A' nor A" exists, x. cannot be constrained to an integral value
and the problem possesses no feasible solution.
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We now find A, - max(,&', Ali For the objective function having A, as one of its
values, let the value of the variable x. be /3 (integral), and also suppose all the other com-
ponents of x are still not integers. To find the second best solution, determine the maximum
values of the fractional interval program with x ./- I and then, with x. + /31. (One of
these values has already been obtained as A' or A ')Also, as A I is not the required solution, a
new variable (say, x.) is chosen from those that are not integral at this stage. Let x, be equal
to y (nonintegral), say. Hence, two more interval programs are solved, viz., the fractional
interval program with x. -/P, x,, - yOand then, with x. - , x - 0 + 1. Let A2 be the max-
imum value of the objective function amongst the values just obtained and those that are
obtained by substituting x. - ft - 1 and x. - #3 + 1. The whole argument can now be repeated
with A2 replacing A, as the current upper bound on the optimal value of the objective function.

Continuing the above process, a tree is formed each of whose vertices represents a known
set of integer constraints (for example, the vertex associated with A, value represents x,,=/)
A branch terminates if it reaches a vertex having a nonfeasible solution. Ultimately, either all
branches are terminated in vertices having no feasible solutions, or else a vertex having the
maximum value Ak, Say, is reached for which all the components for x are integers. This must
be the required optimum solution.

4. NUMERICAL EXAMPLE

For the sake of simplicity and easy understanding of the method, we shall now solve an
example.

EXAMPLE:

maximize Z- 3x, + 20x2 + 4X3 + 4
2x, + 15X 2 + 3x3 + 3'

subject to 8 < 3x, + X2 + 3X3 < 16,

2 < x, + 3X2 < 9,

-I K,3x, + 5X2 + X3 41 11,

3 K, 2X2 + 4X3 4 10,

X1, X2, X3 are integers.

Thus, we have

3 1 3 816

A 1 30 2 9

0 24 3 10
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The problem when solved by primal algorithm method [5] gives

44
19

-4 andZ- Il
19 17

17
19

but it does not satisfy the integrality condition.

We determine the first integral values of min x3, and max x3 . Here, the first integer
value of min x3 is 1. Hence, we maximize the given objective function, subject to the given
constraints by substituting x3  1. The problem becomes

maximize Z 3x, + 20X2 + 8

2x, + 15x 2 + 6'

subject to 5 < 3x, + x2 < 13,

2 < x, + 3x2 < 9,

-2 < 3x, + 5x2 < 10,

-1 < 2x 2 < 6.

This problem when solved by 15] gives x = 3-, x 2 = -- and Z - I

The first integer value of max x3 is 2. This gives x, = 31, x 2 - - 1 and Z = I
2 2 17*

Further, min x3 for its second integer value is x 3 - 0. With this additional substitution,
we do not obtain any feasible solution.

The maximum value of Z upto this point is ! with x, - 3-, X 2 and X3

Thus, Al is given the value 1--6 .
it

We now maximize the given objective function subject to the given constraints with
x3 -1, x, =3. The value of Z comes out to be I and x2 = 0. This gives first integer solu-

tion. Further, the objective function subject to the given constraints with x3 = 1, x, = 4 does
not give any feasible solution.

Since 1 - > 1--, we solve the given problem with x3 = .2, x, = 3, the second integer
17 12

solution is obtained i.e., x, - 3, X2 - 0, X3 - 2 and Z - 5"

Further, with x3 - 2, x, = 4, the solution is infeasible.

Thus, the required optimal integer solution is Z - 1-L, x1 I= 3. x 2 - 0, x 3 - I,
12

NAVAL RESEARCH LOGISTICS QUARTERLY VOL, 28, NO. 4, DECEMBER 1981



NOTE ON LINEAR FRACTIONAL INTERVAL PROGRAMMING 677

ACKNOWLEDGMENT

We are indebted to the referee for valuable comments which helped us in the revision of
this paper.

BIBLIOGRAPHY

[1] Ben-israel, A., and A. Charnes, "An Explicit Solution of a Special Class of Linear Pro-
gramming Problems," Operations Research, 16, 1166-1175 (1968).

121 Buhler, W., "A Note on Fractional Interval Programming," Operations Research, 19, 29-36
(1975).

[31 Charnes, A., and W.W. Cooper, "Programming with Linear Fractional Functionals," Naval
Research Logistics Quarterly, 9, 181-186 (1962).

[41 Charnes, A., and W.W. Cooper, "An Explicit General Solution in Linear Fractional Pro-
gramming," Naval Research Logistics Quarterly, 20, 449-467 (1973).

15] Charnes, A., D. Granot and F. Granot, "On Solving Linear Fractional Interval Program-
ming Problems," Faculty of Commerce and Business Administration, Working paper
No. 358, University of British Columbia, Vancouver (Oct. 1975).

[6] Charnes, A., D. Granot and F. Granot, "A Note on Explicit Solution in Linear Fractional
Programming," Naval Research Logistics Quarterly, 23, 161-167 (1976).

17] Land, A. and A. Doig, "An Automatic Method of Solving Discrete Programming Prob-
lems,'" Econometrica, 28, 497-520 (1960).

(81 Martos, B., "Hyperbolic Programming," translated by A. and V. Whinston, Naval Research
Logistics Quarterly, 11, 135-155 (1964).

(91 Martos, B., "The Direct Power of Adjacent Vertex Programming Methods," Management
Science, 12, 241-252 (1965).

[10] Robers, P.D., "Interval Linear Programming," Ph.D. Dissertation, Northwestern Univer-
sity, Evanston, IL (1968).

111] Zionts, S., "Programming with Linear Fractional Functionals," Naval Research Logistics
Quarterly, 15, 449-452 (1968).

VOL. 28, NO. 4, DECEMBER 1981 NAVAL RESEARCH LOGISTICS QUARTERLY



A

A NOTE ON
SOJOURN TIMES IN

M/G/1 QUEUES WITH
INSTANTANEOUS, BERNOULLI FEEDBACK*

Ralph L. Disney

Department of Industrial Engineering and Operations Research
Virginia Polytechnic Institute and State University

Blacksburg, Virginia

ABSTRACT

Queueing systems which include the possibility for a customer to return to
the same server for additional service are called queueing systems with feed-
back. Such systems occur in computer networks for example. In these systems
a chosen customer will wait in the queue, be serviced and then, with probability
p, return to wait again, be serviced again and continue this process until, with
probability (I - p) - q, it departs the system never to return. The time of
waiting plus service time, the nth time the customer goes through, we will call
his eth sojourn time. The (random) sum of these sojourn times we will call the
total sojourn time (abbreviated, sojourn time when there is no confusion which
sojourn time we are talking about). In this paper we study the total sojourn
time in a queueing system with feedback. We give the details for M/G/I
queues in which the decision to feedback or not is a Bernoulli process. While
the details of the computations can be more difficult, the structure of the so-
journ time process is unchanged for the M/G/I queue with a more general de-
cision process as will be shown. We assume the reader is familiar with Disney,
McNickle and Simon [1].

1. INTRODUCTION

One of the major, largely unsolved problems in queueing systems with feedback, is the
sojourn time problem. Upon entry to the system, a customer spends some time waiting and
being served. We call this total the customer's sojourn time on his first pass through the
server. At the conclusion of this time, the customer immediately returns for more service,
with probability p, or departs never to return. In the latter case the customer's total sojourn
time and it's sojourn time on the first pass are equal. In the former case the customer immedi-
ately experiences another sojourn time on it's second pass. Thus, in general, the total sojourn
time is a (random) sum of the sojourn times on each pass through the server. However, the
number of passes through the server is a random variable. Under the assumption that the deci-
sion to feed back or not is a Bernoulli random variable, the number of passes through the
server is then a geometrically distributed random variable.

*This research was supported jointly by NSF Grant ENG77-22757 and by the Office of Naval Research Contract
N00014-77-C-0743 (NR042-296).
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One can consider many such sojourn time problems depending on where the feedback
unit is allowed to reenter the queue. If, for example, it returns to the head of the queue, one
finds trivially that the total sojourn time is equivalent to the sojourn time of a customer in a
queue without feedback. However, if the feedback reappears anywhere else in the line (e.g.,
the feedback goes to the end of the line as is the most common assumption), determining the
total sojourn time distribution seems to be a formidable task. The problem is caused by the
fact that it is the sum of the sojourn times that that customer spends each time he goes through
the server and, these times are not independent of each other. We will study this total sojourn
time problem.

Takacs [41 and Montazer-Haghighi [31 are the only papers that we are aware of that study
this problem in detail. Takacs' results are for M/G/l queues with an instantaneous Bernoulli
feedback process, as are most of ours though our methods are different.

Montazer-Haghighi studies the M/M/m queue with instantaneous, Bernoulli feedback
with particular emphasis on m = 2. He finds a transform for the sojourn time distribution in
the steady state, and the first two moments of this distribution as well as the steady state queue
length distribution.

2. THE PROBLEM AND NOTATION

We are concerned with sojourn times in M/G/I queues with instantaneous, Bernoulli
feedback. We assume the reader is familiar with Disney, McNickle and Simon [I1.

Choose a customer, C. We will follow it through the system. Suppose that customer
feeds back to the end of the queue, instantaneously K times in all. K is a geometric distributed
random variable on (0, 1, 2, ... ) with parameter p. Each time the customer enters the queue,
the queue discipline is first in-first out (FIFO). Then define:

No = the number of customers ahead of C upon its initial arrival.

N, -- the number of customers left behind the nth time C leaves the server (n
1,2. K).

T, = the time at which C leaves the server for the nth time (n = 1,2. K).

1, if C feeds back at T,
Y. = Y(T,) = 0, otherwise.

(YJ} is a sequence of independent identically distributed random variables with
Pr Y = 1 p, Pr[ Y, = 01 - 1 - p = q. That is (Y,) is a Bernoulli process.

X,- T,T_- - the sojourn time of C on its nth trip through the system
(n - 2,3 ... K). That is, X,, is the sum of the time C spends waiting for ser-
vice plus the time spent in service the nth time Centers the queue.

X, - T, = the sojourn time of C on it's first trip through the server.
Tf =- X + X2 +,.+XA-

B,(y) - number of exogenous arrivals to the queue during the nth sojourn time (of
length y) of C(n - 1,2. K). B,(y) is a Poisson random variable (h)') for
each n.
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Given N,-l,

Ch - the number of customers ahead of C at the start of it's nth pass through the sys-
tem who feedback. C, is a binomial random variable, with parameters p, N,,-.

3. RESULTS

A point often made concerning the queue length process for the M/G/I queue with {YJ
a Bernoulli process is that it is equivalent to a queue without feedback in the sense that there
always exists an M/G/I queue without feedback whose limiting queue length distribution is
equal to that for the M/G/I1 queue with Bernoulli feedback. The question then arises as to
whether there is an M/G/I queue without feedback whose limiting sojourn time distribution is
equal to that of the M/G/I queue with Bernoulli feedback. Lemma I is a partial answer to the
question.

LEMMA 1: If the feedback unit goes to the tail of the line and if the M/G/I queue
without feedback and the M/G/I queue with Bernoulli feedback are to have the same first
three moments for their respective total service time distributions, then there is no M/G/1
queue without feedback whose limiting total sojourn time distribution is equal to that of the
M/G/I queue with Bernoulli feedback.

PROOF: Let T" be the sojourn time for a M/G/I queue without feedback. Let a, be
the nth moment about 0 of the service time (for one pass through the server) of the feedback
queue. Let 7-,, be the nth moment about 0 for the total service time in the queue without feed-
back. If the total service times of the two queues are to have the same first three moments
then it is a simple exercise to show

a'
T I q

2  
+ 2(1 - q)a

2

q q2

a3 6(1 - q)ala 2  6(1 - )2a'
T3 q 2 + 3

q q q3

Then using the expected sojourn time and the second moment of the sojourn time for the
queue with feedback given by Takacs [41 and the well known results (for example, see Klein-
rock [21; Section 5.7) of corresponding moments for the M/G/1 queue without feedback one
obtains

E(Tw) - E(T),

E(()Tw) E((Tf)
2)

unless q - 1 (i.e., there is no feedback). 0

The following results structure the problem as a Markov renewal process for the M/G/I
queue with ( Y,) a Bernoulli process.

THEOREM 1: IN., A. is a delayed Markov renewal process for each n 4 K.
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PROOF: For K - k. One needs only note that when C first enters the queue, it finds No
customers already in line and, for any FIFO, M/G/1 queue X, depends only on N0 . If C does
not feedback, X, is its total sojourn time. However, if C feeds back it will encounter all of
those customers to arrive during X, and, additionally, those among the No who feedback. But,
the number ahead of C if it feeds back, N1, depends only on X, and N0 . Since these results are
true for any n > 1, IV, X.} has the Markov renewal property. In the M/G/1 case this pro-
cess is a delayed Markov renewal process since X, will not in geAeral have the distribution of
X, forn= 2,3 ..... C-

Let He(x) be the remaining service time of the customer in service (if any) at the arrival

of C. Let H(x) be the i-fold convolution of H with itself. Then we have

COROLLARY 1: The transition functions for the (N, XJ process are given by

D(x) = P(NI = j, X, < xjNo i)

fo x H (dy) A oj ), i = 0,if 10

- x(H. * H') (dy)Aij(y), ifi = 1, 2,

and

Q,(x) = P(N, , X, X< xIN._ = i)

fox H (dy)A 0 j(y), if, = 0,

if I=12= o oX Hi +' (dy)Aii(y), if i =1, 2. ..

Here

A,(Y) = JI pmqi-m (KY)J-m e-kym-O 
rn!

PROOF: The result is made apparent as follows. Given i and C, the number feeding
back is simply a Benoulli random variable with parameters ip. For a given C, and a given
sojourn time the nth time C goes through, the number of new arrivals is a Poisson random
variable. Furthermore, given C and i, the new arrival process and the feedback process are
independent. Therefore, Aj(y) is simply the distribution function for the total number of
inputs to the queue during C 's nth pass through. Given there are i ahead of him on the pass,
H1+1 (T) or H( T) is then the distribution function for the sojourn time of C on his nth pass.
Then since

Pr[N, - j, X, < xIN,_ - il - PrX, < xIN,,-_ - i] Pr[N,, - jIX. < x, N,._ - il

the result follows easily. 0

Then since (N,, X) is a Markov renewal process we have
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COROLLARY 2:

Q,,' (.Y) = P(NA = j. T- y .INo= i) -

J ' D,.(d) Q'l 'k - (v - x)

PROOF: For K = k these are the usual k step transition functions for a delayed Markov
renewal process. -

If A < q1 there exists a vector n" satisfying

7 rQ(=7 ).

THEOREM 2: For a M/G/1 queue with instantaneous Bernoulli feedback, in the steady
state, the sojourn time for C is given by

P(T' 1< y) = 7r Q( p' U,

where U is the column vector whose elements are all 1.

PROOF: Conditioned on C feeding back k times Corollary 2 gives the joint distribution
of NAK and T conditioned on No. The result then follows by removing the condition for the
number of feedbacks and the No and finding the resulting marginal distribution for T. _

Thus the marginal sojourn time of C is given by Theorem 2. But notice that, in general,
sojourn times of successive customers are not independent and therefore the sojourn time pro-
cess is not specified by Theorem 2 alone. Notice also that the Bernoulli process { Y,} plays a
minor role. The results can be generalized at least to the case

P (Y, = ulIY,_ v, N, - N,_ I =i S, = y).

Thus, in principle, the sojourn time problem for M/G/1 queues with feedback is solved for a
rather large class of ( YJ processes.

There is an interesting question in these results. We know from Lemma 1 that there is
no M/G/I queue without feedback whose sojourn time distribution is equal to the M/G/I
queue with Bernoulli feedback if the two service times are to have the same ,rst three
moments. If we relax this moment requirement, the problem can be exposed as follows: Is
there any M/G/I queue without feedback whose sojourn time distribution for a given customer
is equal to that sojourn time for a given M/G/I queue with Bernoulli feedback?

REFERENCES

(l] Disney, R.L., D.C. McNickle, and B. Simon, "The M/G/I Queue with Instantaneous Ber-
noulli Feedback," Naval Research Logistics Quarterly, 27, 635-644 (1980).

[21 Kleinrock, L., Queueing Systems, Vol. 1: Theory, (John Wiley and Sons, New York, 1975).

VOL. 28, NO. 4. DECEMBER 1981 NAVAL RESEARCH LOGISTICS QUARTERLY



684 R. L. DISNEY

131 Montazer-Haghighi, A., "Many Server Queueing Systems with Feedback," 228-249,
Proceedings of the Eighth National Mathematics Conflerence, Arya-Mehr University of
Technology, Tehran, Iran (1977).

(41 Takacs, L., "A Single Server Queue with Feedback," Bell System Technical Journal, 42,
505-519 (1963).

I

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 4, DECEMBER 3981I



A NOTE ON TWO IFR SYSTEMS

Zvi Schechner

Department of Industrial Engineering and Operations Research
Columbia University

New York, N. Y

ABSTRACT

We present probabilistic proofs for the following two facts:

(i) A k out of n system of i.i.d (independent identically distributed). IFR
(increasing failure rate) components has an IFR life distribution.

(ii) A compound Poisson process with nonnegative i.i.d jumps with PF2 dis-
tribution is IFR.

INTRODUCTION

A nonnegative random variable T is said to possess an IFR distribution if for any a > 0,
P(T > t + aIT > t) is nonincreasing in t. In words, given (T > t), T is stochastically
decreasing in t. This notion of aging is intuitively well understood and plays an important role
in the theory of reliability. In this report we provide probabilistic proofs for the following
known facts:

(i) A k out of n system of i.i.d. IFR components has an IFR life distribution

(i) A compound Poisson process with nonnegative i.i.d. jumps with PF2 distribution
is IFR.

These theorems have been proven before, (i) in [2] and (ii) in [4]. In both cases the approach
was purely analytical. By using a probabilistic approach we are able to provide better insight and
intuition.

1. k-OUT-OF-n SYSTEM

Consider an-n component coherent system 0. The components' lifelength T1, T2.
T, are assumed to be i.i.d. random variables having distribution F(F - 1 - F) and density
F' - f (for further discussion of coherent systems consult Barlow-Proschan [31). Let
X,(t), i - 1. n be 0 or I according to whether (T, < t) or (T, > t), respectively, and let

X(t) - (X(t)W. X,()) be the state vector at time t. Let N,- X A'(1) denote the
i-I

number of functioning components at t. Then for an arbitrary coherent structure we have:
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LEMMA 1:

For any k, (k 0,I.. n)

PROOF:

Check that for] j .

P(N, ) N, >, k, O(X(t)) -I) >, P(N, >, j =~t 1).

LEMMA 2:

E(N, IOX~) = 1)- 1
h (F(t))

where h(-) is the reliability function of oo and

PROOF:

E(N, jO(X(t) 1 ) EI',(t) I O(X(t)) - 1]

P P(Xt) = I, 40(X(:W) - I)

P(O(X(t)) = 1)

and by the independent assumption this equals

TW hj(F))

LEMMA 3:

h'(p) - h h(I j, p) - h h(0,, p).
i-I i-1
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PROOF:

See Barlow and Proschan [31.

The following is the main theoem of this section.

THEOREM 1:

Let , be an arbitrary coherent structure, then for any k (k -= 0. n):

P(N > k 1(X(0)) - 1) is nonincreasing in t.

Thus, given the system is up at t, the number of functioning components of stochastically

decreasing in t.

PROOF:

P(N, > k b(X()) = 1) can be written in the following way:

cj[F(t)l j IF(t)!"- j

J-k

h(F(t))
where cj is the number of distinct 0'-path sets of size j. Thus,

d P(N, > k J(X(t)) - 1)
dt

fcj[F(t)]J[F(t)]"-J

d j-k
dt h(F(t))

I h h(F(1))f W
= h1) I F(t)F(1) P(N, > k, *(X(t)) - 1) x

(E[N, - E[N, IN, > k, O(X(t)) - I1)

+ f(t)h'(())P(N, > k. *(X(t)) - 1)J.

This is nonpositive for t > 0 iff

h (F(t))-() F(t) (E[N,] - E(N, I N, > k, O(X(t)) - 11) + h'(T(t)) < 0.F()Ff(t)I

By Lemma 1,
4. <h (F(t)) (E [N,] - E [N, q6(X(t)) - 11) + h'(j (t).
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By Lemmas 2, 3:

F(t) j 1, FTO))
h (F(t)) 'n(1) - _________

+ F(1,F(t)) h Mt(O ())

+i I j, i-I (,F~)

= Inh(F(t)) - F(t) jh(1,, F(W) - F( t) jh(Oi, Tt

IO nh(F(t)) - nh(F(t))I - 0.

dt

Note that even though the unconditional process N, is decreasing stochastically (in fact,
decreasing with probability 1, it is not always true for the process conditional on O(Xt) = 1.
Indeed, for the nonidentical component cast this is not true. The following example illustrates
it. Let the system be

: 2 13

Its structure function is O(X) - max (XI, X2 ' X3) and suppose the lifetimes are independent
and distributed uniformly on (0, 1) and (0, 2) (0, 2), respectively, then check

P (N, >, 2I4(X 0)) = 1) < 1 forO0 < t < I

=Ifor I < t < 2.

DEFINITION:

A structure 44 is called k-out-of-n iff O(X) = I or 0 according to whether X, >, k or

< k, respectively.

COROLLARY I:

If the component lifetime is JER, then the k-out-of-n system has an IFR distribution.

PROOF: Fix k, (k -1,2,. n)

We have to show that for x > 0

P(N,+X. >, k I N, >, k) is decreasing in t.
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Let

S (r, tx) ='(r T, F+ X) + [X)_____
where r > k, x > 0 and F() is the component lifetime distribution function, which is

assumed to be IFR. Thus for fixed x > 0, S (r, t, x) is increasing in r and decreasing in t and

P(N,.x > k I N, > k) = E(S(N,, t, x) I N, > k).

By Theorem 1, given N, -> k, N, is stochastically decreasing in t, which implies

E (S (N,, t, x) I N, > k) is decreasing in t.

2. IFR SHOCK MODEL

Let IN,: t > 0) be a homogeneous Poisson process with intePsity X > 0 and let
X 1, X 2, ... be a sequence of i.i.d. nonnegative random variables independent of {N} and dis-
tributed according to F. The process

Y(t)=X, +...+XN, ifN, > 0

0 if N, = 0

is called a compound Poisson process. Esary, Marshall and Proschan [4i studied this process
and derived, among other things, conditions which make the process IFR. (A nonnegative pro-
cess Yis IFR iff for any a > 0, T - inf It: Y, > a) has an IFR distribution.) Their approach
is purely analytical and they derive the conditions using total positivity theory. We start with
the following theorem:

THEOREM 3:

For any k >, 0, c > 0:

P(N > k I Y(t) < c) is increasing t.

PROOF:

SF*J(c) (kt)J/j!

P(N, > k I Y(t) W c) - j-k

F*J(c) (Xt)J/j!
J-O

where F~j denotes the jfh fold convolution of F. The proof is by induction on k.

For k - , check
SF*J(c) WPM)/j

J-1 > 0.
I + £ F'(c) (.t)J/j!

i-1
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Now assume it holds for k 4 n, and to show that it holds for k - n + I
F ' J(c ) (A t ) j  k !

j-n+- j-n x-nil

J-O j-0 j-n

By the induction hypothesis it suffices to show

but

t______ - jn1 1 W' 1~- l ji -n~.i
It is easy to check that the numerator is nonnegative iff:

F'° (c) ( -t , , i F*,0 Gk .. jJ j > 0

which is true since it is equal to

[F ( n'+ l ) (Xt)n+llnn! + F (i + 2) (X t) n+2 /n(n + 1)! +...]

- IF* (n+ l) (Xt)n+/(n + 1)! + F*(n+2) (Xt),+ 2/(n + 2)! + ... ] > 0.

COROLLARY 2:

Theorem 3 holds even when Y) is nonhomogeneous compound Poisson. We also need
the following well known lemma.

LEMMA 4:

If the distribution function F is PF 2, i.e., if for any x, < x 2, YI < Y2:

F(xl - y,) F(x - Y2 )
F(x2 -y) F(x 2 - Y2) °

then for any x, < x 2 and n > 0
F'n(x,) F"(R+ I) (X2) > F*"(x2)F*" + ') (xi).

PROOF:

See Esary-Marshali-Proschan 14J, Theorem 4.9. The above states that if a sequence of
i.i.d. random variables XoX 2. ... have a PF2 distribution F, then for any x, < x2:
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P(XI + + Xn 4 x 1 X1 + + X < x2) is decreasing in n.

COROLLARY 3:

If Fis PF2, then for x, < x 2

P(Y(t) < X1 I Y(1) < x 2) is decreasing in t.

PROOF:

P(Y(t) <4 X I Y(t) '<x2)

= , P(Y(t) 4 x I Y(t) < x 2, N, n)P(N, = n I Y(t) < x2)
n1-0

-- P(X1 + ... + Xn < X, I X, + .. + Xn < x2)P(NI ft I y(l) -< X2)
'1-

given Y(f) < x2, N, is stochastically increasing in t and P(X + ... + X, 4 x, I X, + ... +
X. 4< x2) is decreasing in n and hence

N.PXI + .. + Xn <4 X1 I X1 + .. + Xn < x2)P(N, -f n [Y(t) <4 X2)

n-0

is decreasing in t.

COROLLARY 4:

If F is PF2 then the compound Poisson process Y is IFR.

COROLLARY 5:

Suppose Y is nonhomogeneous compound Poisson with intensity A (), then if F is PF2
and X is increasing, Y is IFR process.

PROOF:

Have to show that for x > 0, c > 0,

P(Y(t + x) < c I Y(t) c) is decreasing in t.
[1+ X (u)dujI

Fix x > 0 and let h(t,y)- F'(c-y) for 0 < y < c. Now since X is
J-

0

increasing in r, h(, y) is decreasing in t and y. But

P(Y(t + x) < c I Y() c) - Eh((,Y()) 1 Y(t) W c)

which is decreasing in t. A similar result concerning the nonhomogeneous compound Poisson
was obtained by Abdel-Hameed-Proschan [11 using similar argument as in Esary-Marshall-
Proschan [4].
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A NOTE ON THE TWO MACHINE
JOB SHOP WITH EXPONENTIAL

PROCESSING TIMES

Michael Pinedo

Georgia Institute of Technology
Atlanta, Georgia

ABSTRACT

Consider two machines, labeled I and 2. A set of tasks has to be processed
first on machine I and after that on machine 2. A second set of tasks has to be
processed first on machine 2 and after that on machine 1. All the processing
times are exponentially distributed. We present a policy which minimizes the
expected completion time of all tasks.

We consider two machines, labeled 1 and 2. There are n tasks which have to be pro-
cessed first on machine I and after that on machine 2. This set of tasks will be called set A.
Moreover, there are m tasks which have to be processed first on machine 2 and after that on
machine 1. These tasks will be called set B. The processing time of task i, i E A UB, on
machine 1 (2) is a random variable exponentially distributed with rate X, (ui). Any of these
rates may be infinite, that means that the corresponding processing time is zero. This model is
usually called a Job Shop.

We are interested in a policy which minimizes the expected completion time of all
tasks-the so-called makespan. A class of policies will be considered in which the decision-
maker, at any time when a machine is freed, is allowed to review his policy and let his decision
depend on the past history of the process.

The version of the above problem where the processing times of the tasks are determinis-
tic has been treated by Jackson (21. He presented a polynomial time algorithm to find the
optimal schedule.

The special case where set B is empty is usually called a Flow Shop. So a Flow Shop is a
Job Shop in which all tasks are required to pass through the successive machines in the same
order. Bagga III treated the two-machine Flow Shop with exponential processing times, i.e.,
the Job Shop where set B is empty. We will give here a short description of his results as it will
play a role in the proof of the main theorem in this note. As the order in which the tasks are
processed on the second machine does not affect the makespan in the Flow Shop model, the
sequence in which the tasks are processed on the two machines can be assumed to be the same.
So the Flow Shop model is basically a sequencing problem. Let ji,.. j, a permutation of
1,...n, denote the sequence in which the tasks go through the machines, i.e., at time ( - 0
task ji starts being processed on machine 1; after it finishes its processing there, it starts on
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machine 2, while task j 2 starts on machine 1, etc. One would like to know the sequence which
minimizes the expected makespan. Let E(F(ji.. J,)) denote the expected makespan when

using sequence j1. Jn.

THEOREM I (Bagga):

(i) E(F(il ... . -1, ii. -,,1, i,12, .. .. d ) <

E(F(J1 .. J,-1- A,+1, J, ji 2- .. .. d )

when

A,-u,) \ ( 1

(ii) Processing the tasks in decreasing order of X, - AL, minimizes the expected
makespan.

It is clear that (ii) is an immediate consequence of (i), but it is part (i) that we will need

in the proof of Theorem 2. Theorem I tells us also that when the processing time of task i on

machine 1 (2) is zero, i.e., X, = - ( , - -), it has to go first (last). If there are a number of

tasks with zero processing times on machine 1, all these tasks have to precede all the others.

The sequence in which these tasks go through machine 2 does not affect the makespan. A

similar remark can be made if there is more than one task with zero processing time on

machine 2.

The Job Shop model under consideration in this note can be viewed as a Markov Decision

Process in continuous time. Define the decision moments to be the time epochs that a

machine is freed. A policy instructs the decision maker to take a certain action at a decision

moment (to start processing a certain task on the machine just freed) depending upon the state

of the system at that moment. The state of the system at a decision moment is determined by

the tasks which have been completed up to that moment and the task which is still being pro-

cessed on the busy machine. In Theorem 2 we will determine the optimal policy, i.e., the pol-

icy which minimizes the expected makespan. We will use the following terminology: A "sin-

gle" task denotes a task which only has to be processed on one of the machines; so we assume

that a single task of set A (B) remains only to be processed on machine 2 (1). A "double" task

denotes a task which still has to be processed on both machines in the prescribed order.

Observe that a single task of set B can be considered as a double task of set A with zero pro-

cessing time on machine 2.

THEOREM 2:

The optimal policy instructs the decision-maker, whenever machine 1 (2) is freed, to start

processing of the remaining double tasks of set A (B) the one with the highest value of h - JA

- X). If no double tasks of set A (B) remain, the decision-maker may start any one of the
single tasks.

PROOF:

The proof consists of two parts. In the first part we compare two policies, which we will

call ir 1 and r 2. Suppose machine I is freed at time t. Both ir I and r 2 will schedule the remain-
ing double tasks of set B and the single tasks of set A, which finished their processing on
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machine I before time t, in the same sequence on machine 2. under 7r, and w2 machine 2 has
to process these tasks before it processes those tasks of set A which finish on machine I after
time t. On machine 1 policy rI will schedule at time t first task I (with parameters h and A i)
followed by task 2 (with parameters A 2 and A 2). Any of these parameters may be infinite. Pol-
icy V'2 will schedule first task 2 and then task I. After finishing these two tasks, policies 7 I and
V 2 will schedule the remaining tasks in the same sequence on machine I. These remaining
tasks include double tasks as well as single tasks, including the single tasks of set B which have
finished their processing on machine 2 after time t. Call this sequence of tasks Jl ..... Jk. Let
x denote the time machine 2 still needs to finish the remaining double tasks of set B and the
single tasks of set A which have finished their processing on machine 1 before time t. Let
X1 (X2) denote the random processing time of task 1 (2) on machine I. In case X1 + X2 < x
the makespans under 7r1 and V'2 are clearly equal. So we only have to compare 7rI and IT2 in
case X, + X2 > x. We will make a distinction between two cases:

(i) Suppose X, > x and we are using 1T1. At time t + x the problem reduces to a
Flow Shop where the sequence used is 1, 2, Ji -.. ,k.

(ii) Suppose X, < x and X1 + X 2 > x, The problem reduces at time t + x to the
same Flow Shop with the difference that task I has finished its processing on
machine I already.

Now let E(JI) (E(J 2)) denote the expected remaining time to finish all tasks on both machines
under policy I (t 2).

E(JIIXI + X2 > x) P(XI + X 2 > x) =

e-"lx [x + E(F(I, 2, i .. jk))] +

fv e-l e~-A 2(x- i')and dy x + E(F(1,2, J . Jk))-

and

E(J 21X1 + X 2 > x) .P(X + X 2 > x)

-A Ix + E(F(2 , J.. iA))] +

- 2  e-AIXY) dy x + E(F(2, 1,j i... k)) -

Clearly,
X X

e-xX + fyvo Ie
-'ly e-A2(x-Y) dy =e-h 2x + fo e- X ' e-Ai(X-.) dy

as both the I.h.s. and the r.h.s. are equal to P(XI + X2 > x). And also

I 0X1 e-ilY e-A 2X-Y) dy - I - O 2 1. e-\1(x-yl " I

as can be checked easily.
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So

E(1 11X + X2 > x) - E(J 21X1 + X2 > x)=

E(F(1, 2, Jl .... Jk)) - E(F(2, 1, Jl ..... Jk))

which according to Theorem 1 is positive when X I - A I < X 2 - A 2. This completes the first
part of the proof.

In the second part of the proof we use the result of the first part to show the theorem. It
is a well-known fact in the theory of Markov Decision Processes that a policy r is optimal, if
when using r from any decision moment r and state onwards it results in a smaller expected
makespan than acting at t not according to 7r * but from the next decision moment onwards
according to ir

Let ir * denote the policy described in the theorem and let 7r' denote a policy which acts
differently at t and acts according to 7r * from the next decision moment onwards. It is clear
that the sequence resulting under ir' can be transformed into the sequence under 7T * through a
number of adjacent pairwise switches, involving the tasks scheduled on the machine which was
freed at time t. Each pairwise switch will cause a decrease in the expected makespan as was
shown in the first part of the proof.

This completes the proof of the theorem.
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